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A new sound mode in liquid 4He ?
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Abstract

This letter is based on the hypothesis of a small entropy content of the
superfluid fraction of liquid helium. We show that such a superfluid entropy
gives rise to a new sound mode in a ring-shaped superleak. This mode is
named sixth sound. We propose an experiment by which its sound velocity
and thereby the superfluid entropy can be measured. A negative experiment
would yield a new upper limit for the superfluid entropy.
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Many experiments show that the entropy Ss of the superfluid fraction in
He II is small if not zero. The experimental determination of Ss (or of an
upper limit) has been undertaken by many researchers. The last experiment
(to our knowledge) which is explicitly devoted to this question has been
performed by Glick and Werntz [1]. The result was that the ratio Ss/S is
less than 3%; earlier experiments cited in Ref. [1] are less accurate. Singsaas
and Ahlers [2] have interpreted their second sound measurement as that
of entropy and found no difference to the true (caloric) entropy. The main
uncertainty comes here from that in the absolute values of the caloric entropy
(about 1 to 2%). Summarizing one may say that a ratio Ss/S of the order of
one percent is not excluded by the experiment.

In nearly all theoretical approaches Ss is taken to be zero. As discussed
by Putterman [3] this is an assumption. Microscopically, Ss = 0 follows from
the identification of the superfluid density ρs with the square of a macro-
scopic wave function [4]. This identification is plausible but nevertheless an
assumption. An early investigation of the effects of a non-vanishing superfluid
entropy is given in Ref. [5].

The present letter is based on the hypothesis of a small, non-vanishing
superfluid entropy Ss. The main result is a proposal for an experiment by
which a small superfluid entropy could be measured. In case of a negative
result the experiment would yield a considerably lower upper limit for Ss/S.

We present a plausibility argument for a small, non-vanishing superfluid
entropy; the results of this letter are, however, independent of this argu-
ment. We refer to the well-known suggestion [6, 7, 3] of a close connection
between the Bose-Einstein-condensation of the ideal Bose gas (IBG) and the
λ-transition of liquid 4He. We contrast this with the following discrepancy
between liquid helium and the IBG. The critical behaviour of the condensate
fraction of the IBG is

ρ0

ρ
∝ |t|2β, β =

1

2
, (1)

where t = (T − Tλ)/Tλ is the relative temperature. In contrast to (1) the
superfluid fraction of He II behaves roughly like

ρs

ρ
∝ |t|2ν, ν ≈ 1

3
. (2)

The suggested connection between the Bose-Einstein-condensation and the
λ-transition is in conflict with β > ν (implying ρ0 � ρs just below the transi-
tion). This conflict can be resolved by assuming that non-condensed particles
move coherently with the condensate [8]. Such a coherent motion can be de-
scribed by multiplying the real single particle functions of non-condensed
particles by the complex phase factor of the condensate. The superfluid den-
sity ρs is then made up by the condensate density ρ0 plus low momentum
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Powder-filled ring with He II
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Figure 1: A circular persistent current flows through a ring-shaped superleak.
In the common two-fluid model the current may be accompanied by a static
fountain pressure (FP) gradient ∆P/∆T . If the superfluid entropy is non-zero
such a FP gradient is no longer static. It becomes an oscillating mode.

non-condensed particles; as a whole, ρs can no longer be identified with the
square of a macroscopic wave function |ψ|2. The contributing non-condensed
particles carry entropy. This leads to a non-vanishing superfluid entropy Ss.

Fitting ‘ρs = ρ0 + non-condensed particles’ to the known superfluid den-
sity yields an estimate of the superfluid entropy [8]. This model for Ss implies
Ss → 0 for T → Tλ (because of ρs → 0) and for T → 0 (because of ρ0/ρ→ 1).
Ref. [8] predicts a maximum value of Ss/S of about 1% at T ≈ 2 K.

The remainder of this letter is independent of the arguments presented
in favour of a non-vanishing entropy. The investigation is based on the hy-
pothesis of a small non-vanishing superfluid entropy Ss.

Generally one expects corrections of the order Ss/S for various quantities
in He II like the fountain pressure or sound velocities. An investigation [9] of
standard experiments shows that these corrections are too small to be readily
detected (for Ss/S ∼ 1%). A non-vanishing superfluid entropy leads, however,
to a new sound mode in a ring-shaped superleak [9] as will be shown in the
following. This new mode is named sixth sound. Based on the sixth sound,
we propose an experiment by which a possible, small superfluid entropy can
be measured.

We consider the following two experiments in a ring-shaped superleak
(Fig.1):

(i) A persistent current flows with constant velocity us along the ring. The
temperature T and pressure P are constant.

3



(ii) Along the ring there is a static temperature and pressure gradient. The
ratio ∆P/∆T is that of the fountain pressure (FP). The superfluid
velocity us vanishes.

Each of these (meta-) stable configurations may be established independently
of whether the superfluid entropy vanishes or not. We consider now the com-
bination of (i) and (ii), that is a persistent current together with a FP gra-
dient:

Ss = 0: The persistent current carries no entropy. It is compatible with a
static FP gradient of T and P ; the static entropy balance is unaf-
fected.

Ss 6= 0: The persistent current carries entropy. For non-constant temperature
and pressure this implies a net entropy current and consequently a
time-dependence in the entropy continuity equation. In the presence
of a persistent current the FP gradient is non-static.

For Ss 6= 0 the non-static combination of (i) and (ii) leads to an oscillation of
the FP amplitudes ∆P and ∆T . The discussed static limits imply that the
frequency of this oscillation approaches zero for us → 0 or Ss → 0.

The derivation of the new sound mode (or FP oscillation) is based on the
equations of motion of the two-fluid model [3] which are adequately modified
for Ss 6= 0. The normal phase is clamped in the superleak,

un = 0 . (3)

This condition makes the continuity equation for the momentum (Euler equa-
tion) obsolete. The continuity equation for the mass and the entropy, and the
equation for the superfluid motion are

∂tρ+∇(ρsus) = 0 , (4)

∂t (ρs) +∇(ρsssus) = 0 , (5)

m∂tus +m(us∇)us = −∇(µ− µs) . (6)

Here s = S/N and ss = Ss/Ns denote the entropy per particle, ρ = mN/V
the mass density of the atoms (mass m), u the velocity field, µ the chem-
ical potential and ∂t = ∂/∂t. The indices n and s refer to the normal and
superfluid component, respectively. For a simplified discussion all dissipative
terms are omitted.

Eq. (4) is not changed by ss 6= 0. The modification in (5) is obvious. The
correction term ∇µs in (6) needs, however, some explanation. Because of
curl us = 0 the r.h.s. of (6) must be a gradient field. The FP is determined
by the static limit of (6). In the common two-fluid model the well-known
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(dP/dT )FP = s/v follows from dµ = −s dT + v dP = 0 where v = V/N . In
(dP/dT )FP = s/v we replace s by s−ss because the FP is due to the missing
entropy of the superfluid component. This implies

∂µs(T, P )

∂T
= −ss(T, P ) . (7)

Together with ss the discussed modification of the two-fluid equations should
vanish at Tλ. Eq. (7) and µs(Tλ, P ) = 0 define the correction term µs. This
small term will not be used explicitly in the following.

A detailed investigation of the modified two-fluid model (including the
µs-term) and of its sound solutions is given in Ref. [9] and will be published
elsewhere. This letter is restricted to a simplified derivation of the sixth sound
velocity. For this purpose we consider the ring experiment of Figure 1. The
position (middle line) of the ring may be described by

rring = (R cos φ, R sinφ, 0), φ = 0 . . . 2π . (8)

The thickness of the ring is assumed to be small compared to the radius
R. Then all r-dependences reduce to φ-dependences, and the supervelocity is
parallel to the ring, us(r, t) = us(φ, t) eφ. As independent variables we choose
the temperature T , the pressure P and the velocity us. Using

T (φ, t) = T0 + ∆T exp(i[ kRφ− ωt]) , (9)

P (φ, t) = P0 + ∆P exp(i[ kRφ− ωt]) , (10)

us(φ, t) = us,0 + ∆us exp(i[ kRφ− ωt]) (11)

the equations (4) – (6) are linearized in the amplitudes ∆T , ∆P and ∆us. For
the considered geometry we have three equations for the variables T , P and
us yielding three sound velocities c = ω/k : Two solutions (±c4) describe the
fourth sound; the third solution (c6) is a new sound mode which we call sixth
sound . In the limit ss = 0 we obtain c6 = 0 and the sixth sound reduces to
a static FP gradient. (The number of equations and solutions is not altered
by ss 6= 0 because ss is not a new independent variable.)

We derive now the sixth sound solution in a simplified way. Neglecting
the l.h.s., eq. (6) can be solved by µ − µs = const. or by

∆P ≈ s

v
∆T . (12)

The µs-term in (6) implies a correction of the relative size ss/s which
is neglected in (12). The l.h.s. of (6) is not taken into account because
it is very small compared to the major terms on the r.h.s.; for example
|m∂tus/s∇T | ∼ |mω∆us/ks∆T | ∼ |mω us/ks T | � mu 2

s /s T � 1.
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The considered mode is not a compression mode. Therefore, we set ρ ≈
const. and solve the continuity equation (4) by

ρ ≈ const. and ρsus ≈ const. . (13)

Thermodynamic quantities may depend on T , P and u 2
s . We omit the depen-

dence on the small quantity u 2
s , in particular s = s(T, P ) and ss = ss(T, P ).

We evaluate ∆s and ∆ss for the FP amplitudes (12):

∆s =

(
∂s

∂T

)

P

∆T +

(
∂s

∂P

)

T

∆P ≈
(
∂s

∂T

)

µ

∆T =
cµ
T

∆T , (14)

∆ss =

(
∂ss

∂T

)

P

∆T +

(
∂ss

∂P

)

T

∆P ≈
(
∂ss

∂T

)

µ

∆T =
cµ,s
T

∆T . (15)

The approximate sign comes from the approximation (12). The corrections
are of the relative orderO(ss/s); they stem from the µs-term in (6). In the last
step we introduced the specific heat cµ at constant µ and the corresponding
quantity cµ,s.

We evaluate now the decisive equation (5). Taking into account (13) we
see that ∂t(ρs) = ρ ∂t s and ∇(ρsss us) = ρs us∇ss. Using this, (9), (14) and
(15) we obtain

(
−iωρ

cµ
T

+ i kρsus
cµ,s
T

)
∆T exp(i(kR φ− ωt)) = 0 . (16)

This shows that an excitation with the FP amplitudes (12) is a sound mode
with velocity

c6 =
ω

k
= us

ρs

ρ

cµ,s
cµ

. (17)

For ss = 0 the frequency ω becomes zero and the sixth sound reduces to a
static FP gradient.

Eq. (17) is our central result: It connects the measurable velocity c6 of the
sixth sound with the unknown superfluid entropy. The quantities ρs/ρ, cµ and
us are known or can be measured by standard methods. The sound velocity
c6(T, P ) determines thus cµ,s(T, P ) = T (∂ss/∂T )µ and (using ss(Tλ, P ) = 0)
eventually ss(T, P ). Due to the weak pressure dependence of the entropies
the approximations cµ ≈ cP (= specific heat at constant pressure) and

ss(T, P ) ≈
∫ T

Tλ

dT ′
cµ,s(T

′, P )

T ′
(18)

are valid within a few percent. Eq. (17) and (18) display the simple and rather
direct connection between the sound velocity c6(T, P ) and the superfluid
entropy ss(T, P ).
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We specify now in some detail an experiment by which c6(T, P ) can be
measured. The preparation of a persistent current in a ring-shaped superleak
(Fig. 1) is a standard experiment [11]: Above Tλ the ring (radius R) is rotated
with frequency ωrot around its symmetry axis. During rotation it is cooled
to T < Tλ. After that the ring is stopped. The superfluid phase continues to
rotate with us = Rωrot.

In this configuration one side of the ring is slightly heated. This will
excite modes of the fourth and sixth sound propagating along the ring. The
possible eigenmodes have wave numbers k = n/R with n = ±1,±2, . . .. A
major amplitude may be expected for the ground mode with n = ±1.

At a given time the ground mode of the sixth sound has a temperature
variation of the form

δT (φ) = A cos(φ) (19)

accompanied by δP ≈ (s/v) δT . The amplitude A depends on the excitation
strength. The sixth sound may be conceived as an entropy transport process:
Because of the temperature variation the persistent current causes a small
net entropy current density

δj = ρs us δss = ρs us
cµ,s
T

δT (φ) . (20)

The current δj leads to a shift of the entropy density variation ρ δs =
ρ (cµ/T ) δT (φ) in φ-direction. This shift has the velocity δj/ρ δs = c6. Con-
sequently, the spatial variation (19) rotates with the frequency

ωFP =
c6

R
. (21)

The direction of this rotation depends on the sign of us and cµ,s.
At a given point of the ring one should be able to observe a fountain

pressure oscillation with

δT (t) = A cos(ωFP t) exp(−ΓFP t) (22)

and δP (t) ≈ (s/v) δT . This oscillation can be distinguished from the fourth
sound because of (δT/δP )4th� (δT/δP )6th.

We estimate the damping coefficient ΓFP. The leading dissipation term
on the r.h.s. of eq. (5) is (mκ/T )∇2 T (r, t) where κ is the heat conductivity.
This becomes −k2(mκ/T ) ∆T exp(...) on the r.h.s. of (16). Consequently the
frequency ω in (17) has an imaginary part. For k = ±1/R we obtain

ΓFP = −Imω =
mκ

R2ρ cµ
. (23)

As an example we insert the values us = 2 cm/s and R = 2 cm used in an
actual experiment [11]. For κ we take the upper value 0.05 J/(m s K) for He II
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cited in [3]. For ss(T, P ) we use the estimate of Ref. [8]. At T = 2.15 K and
saturated vapour pressure we obtain then

|ωFP| ≈ 0.01 s−1 , nosc =
|ωFP|
2πΓFP

≈ 16 . (24)

Here nosc is the number of cycles after which the amplitude of the FP os-
cillation is reduced by a factor e. Eqs. (19) – (24) apply to the ground
mode, k = n/R with n = ±1. For higher modes one obtains ωFP ∝ |n|
and nosc ∝ 1/|n|.

The numerical values given in (24) depend on the model assumptions
used for the prediction [8] of ss. The predicted ss has a maximum at about
T = 2.05 K; at this point ωFP and nosc vanish. The best region for starting
the search for FP oscillations is the range between Tλ and 2.1 K or between
2 K and 1.8 K (for normal or saturated vapour pressure).

In the two-fluid model (4) – (6) neither the heat capacity nor the heat
conductivity of the material (powder, containing ring) other than He II is
taken into account. Therefore, our formulae have to be modified with respect
to a specific experiment. The entropy current (20) is not affected by the
surrounding material. The shift of the temperature variation (19) is, however,
accompanied by that of the local entropy of the ring (He II plus powder plus
container). Therefore, the specific heat cµ in (16) and (17) has to be replaced
by the effective specific heat of the ring:

cµ → cring , κ→ κring . (25)

This applies also to the heat conductivity; the specific heat cring has to be
related to one particle of the liquid. The necessity for cµ → cring can be
clearly seen from the discussion following eq. (19). A measurement of cring

is necessary in order to determine ss quantitatively from ωFP. For example,
cring = 2 cµ would halve ωFP. Favourably, the ring material should have a low
heat capacity and a low heat conductivity. Furthermore, the observability
can be improved by using a larger ring or a higher supervelocity (because of
nosc ∝ R |us|).

We summarize: A non-vanishing superfluid entropy implies a new mode
(sixth sound) in clamped He II: In the presence of a persistent current a FP
gradient oscillates with the frequency ωFP. The characteristic proportionality
ωFP ∝ us and the moderate damping should allow the observation of the FP
oscillation. If the sixth sound exists the superfluid entropy ss(T, P ) can be
determined by measuring ωFP(T, P ). If the sixth sound does not exist an
experiment would yield a new upper limit (roughly Ss/S ≤ 1%/nosc) for the
superfluid entropy.
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