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A Model for the λ-Transition of Helium†

Torsten Fliessbach∗

Fachbereich Physik, University of Siegen, 57068 Siegen, Germany

Guided by the analogy to the Bose-Einstein condensation
of the ideal Bose gas (IBG) we propose a new model for the
λ-transition of liquid helium. Deviating from the IBG our
model uses phase ordered and localized single-particle func-
tions. This means that finite groups of particles are assumed
to be phase-locked. These phase correlations can be related to
the singularity at the transition point and to the occurrence
of the superfluid density.

The model leads to the following results:

1. A possible explanation of the logarithmic singularity of
the specific heat.

2. A characteristic functional form for the superfluid den-
sity which yields excellent fits to the experimental data.

3. A quantitative prediction of a small but nonzero en-
tropy content of the superfluid component.

I. INTRODUCTION

In 1938 London1 presented his famous suggestion
about the connection between the λ-transition in 4He
and the Bose-Einstein condensation in the ideal Bose gas2

(IBG). About ten years later this point of view was con-
firmed experimentally by showing the absence of such
a transition in 3He. Theoretically it was supported by
Feynman3 who argued that London’s view was essentially
correct. Furthermore, the microscopic IBG provides a
means of understanding4 some properties of He II. The
actual properties of helium are, however, in many re-
spects quite different from the IBG. In view of this we
propose a model which is a modification of the IBG in-
vented such that relevant equilibrium properties of the
real system are reproduced.

The IBG can be defined by the microscopic states

ΨIBG(rj, nk) = S
∏

k

[
ϕk
]nk

, (1)

which are the symmetrized (S) product states of single-
particle functions (s.p.f.) ϕk of momentum ~k. The
states (1) depend on the coordinates rj (where j =
1, . . . , N ) of the atoms and on the parameters nk = nk.
The temperature dependent expectation values 〈nk〉 of
the occupation numbers display the phase transition of
the IBG.

Our model is based on two major assumptions:

1. It starts with an IBG-related guess for the form of
the many-body states. As in Eq. (1), these states
depend on occupation numbers nk, but beyond Eq.
(1) they contain correlations due to the use of lo-
calized and phase ordered single-particle functions.

2. The phase transition is introduced phenomenolog-
ically by using the IBG values for 〈nk〉. Due to
this feature our model is closely related to the IBG
and will therefore be called almost ideal Bose gas
model , or AIBG.

The basic idea of the AIBG for introducing the rele-
vant correlations is the following: Normally exponential
functions ϕk ∝ exp(ik · rj) are used for the s.p.f. in Eq.
(1). Alternatively one may consider sinus functions which
depend on the component xj = x̂ · rj of rj as follows:

ϕk ∝ sin(qxj + φj) . (2)

Here x̂ is a unit vector in an arbitrary direction, and
q = x̂ · k. For these s.p.f. we introduce the concept of
phase ordering (p.o.):

φj = φ0 (phase ordering) . (3)

Phase ordered (p.o.) s.p.f. with the same q (but in general
different k) are correlated because their squares |ϕk(rj)|2
exhibit common extrema. Thus p.o. leads to an extra
spatial correlation between all atoms with the same q.
Such correlations may be important if many atoms share
the same momentum. Therefore p.o. is a potentially de-
cisive correlation near the transition point in an IBG-like
model.

A p.o. may be introduced by physical (or Dirichlet)
boundary conditions at the walls of the macroscopic vol-
ume V . Then the resulting effects are surface effects and
vanish like V −1/3 for V → ∞. In contrast to this, we
obtain finite effects by assuming s.p.f. ϕk(l.p.o.) which
are not only phase ordered (p.o.) but also localized (l.).
For this purpose the volume V is thought to be divided
into V/V0 finite boxes of size V0. The ϕk(l.p.o) are then
the s.p.f. which are confined to one of these boxes and
subject to Dirichlet boundary conditions. For these s.p.f.
we construct a state of the form (1):

ΨM(rj, nk, N0) = S
∏

vol

∏

k

[
ϕk(l.p.o.)

]nk
. (4)

The product runs over all momenta and all finite vol-
umes. The states ΨM depend on the additional param-
eter N0 which denotes the number of atoms in V0. For
N0 →∞ these states reduce to IBG states. As a surface
effect of the finite boxes the l.p.o. introduces correlations

of the order N
−1/3

0 .
As it stands, the states ΨM cannot be used together

with a realistic Hamiltonian H. Therefore, we multiply
them by a suitable Jastrow factor,
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Ψ (rj , nk, N0) = F ΨM, F =
∏

i<j

f(rij) . (5)

We use Jastrow functions f(|ri − rj |) which have been
determined5 by minimizing the energy E0 = 〈F |H|F 〉.

We have now sketched the basic idea of the AIBG,
namely the modification of the IBG due to a phase or-
dering of the s.p.f. The resulting model is rather close to
the IBG; in spite of some formal similarity of the under-
lying states it is not related to the quasi-particle model
(note that

∑
nk = N for Eq. (5)). In Sec. II the AIBG

will be defined in detail. This includes the evaluation of
the energy

E(nk) =
〈
F ΨM

∣∣H
∣∣F ΨM

〉
(6)

Evaluated with 〈nk〉IBG this energy yields a logarithmic
singularity (Sec. III).

Since our approach is based on the IBG (above point
2), the critical exponent β of the model condensate den-
sity has the value 1/2. This differs from the critical expo-
nent ν ' 1/3 of superfluid density ρs. Therefore, ρs can-
not be identified with the square of the condensate wave
function. In the AIBG we argue that due to p.o. also
noncondensed particles contribute to ρs ; in any IBG-like
model (β = 1/2) such a contribution will be required in
order to account for the experimental value ν ' 1/3. This
contribution leads to the peculiar consequence that the
superfluid component has a nonvanishing entropy Ss 6= 0.
A prediction for Ss 6= 0 will either falsify the model right
away, or provide a crucial test of the model. Therefore
we extend the model in Sec. V to VI such that ρs and Ss

can be calculated.
Section IV shows how the localization of the s.p.f. can

be reconciled with a macroscopic p.o. and introduces
generalized s.p.f. which are able to describe the coher-
ent motion of noncondensed particles with the conden-
sate. Section V presents the model expression for ρs and
shows that it yields excellent fits to the experimental
data. With the model parameters fixed by this fit we
obtain in Sec. VI the crucial model prediction for Ss 6= 0.
This prediction is compared to the available experimen-
tal data; it is found that the prediction is at the border
of present-day experimental detectability.

II. THE ALMOST IDEAL BOSE GAS MODEL
(AIBG)

For a complete definition of our model we define the
l.p.o. s.p.f. (Sec. II A), calculate the energy E (Sec. II B)
and specify the assumptions about the expectation values
of the parameters (Sec. II C).

A. Localized, phase ordered single-particle functions

The l.p.o. s.p.f. in Eq. (4) are formally defined as fol-
lows: The macroscopic volume V is divided into V/V0

cubic boxes of size V0. Within each box we define or-
thonormalized s.p.f. which obey Dirichlet boundary con-
ditions at the walls:

ϕk(l.p.o.) =





√
8

V0

3∏

i=1

sin(kixi) for r ∈ V0 ,

0 elsewhere .

(7)

The Cartesian components ki of k are restricted to the
discrete values qn,

qn = n ·∆k, n = 1, 2, . . . , ∆k = π/V
1/3

0 . (8)

The many-body states of the AIBG are now defined by
Eq. (5) with Eqs. (4) and (7).

This construction is chosen for simplicity. It contains
artificial aspects like the cubic shape and the identical
size of the boxes. The underlying physical picture is that
there are finite regions (of various shapes and sizes) in
which the atoms lower their free energy (see Sec. IV A)
by assuming p.o. in just one direction. For macroscopic
physical quantities we have to average (explicitly or im-
plicitly) over such regions, or over the boxes used for Eq.
(7). Formally we perform this averaging by replacing the
discrete momentum sums by integrals:

∑

qn

. . . =⇒
∑

q

∫
. . . =

1

∆k

∫ ∞

0

dq . . . . (9)

The justification of the lower integral bound will be dis-
cussed in Sec. IV B. The averaging over boxes of finite
size and shape restores also the translational and rota-
tional invariance of the system as a whole. The occupa-
tion number for ϕk will therefore depend only on k but
not on the direction of k.

B. Energy

We evaluate the energy Eq. (6) for the Hamiltonian

H = −
∑

i

~2

2m
∆i +

∑

i<j

u(rij) (10)

with a realistic atom-atom potential u(r), for example of
Lennard-Jones type.

The ground state (g.s.) may be approximated5 by Ψ0 =
F . The corresponding g.s. energy E0 can be written as

E0(V,N ) = 〈F |H|F 〉 =
N2

2V

∫
d3r ũ(r) g0(r) , (11)

where g0(r) is the pair correlation function for Ψ0 and
ũ(r) is given by

ũ(r) = u(r)− ~2

2m
ln f(r) . (12)
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Sensible results for E0 and g0(r) are obtained5 by a sim-
ple ansatz for f(r).

The following evaluation of the energy E for Ψ = FΨM

is based on the fact that the main correlations are deter-
mined by F . The additional correlations due to ΨM 6= 1

are small, they are of the order N
−1/3

0 � 1 for the rel-
evant p.o. effects. The pair correlation function g(r) for
Ψ = F ΨM can therefore be written as

g(r, nk) = g0(r) + ∆g(r, nk), ∆g � 1 . (13)

We relate ∆g to the pair correlation function gM of ΨM.
(An explicit expression for gM and details of the following
derivation are given in Ref. 6). Writing gM = 1 + ∆gM

it follows that ∆g → 0 for ∆gM → 0, or ∆g ∝ ∆gM. To
lowest order in f(r) Eq. (5) yields

∆g(r, nk) ' f(r)2 ∆gM(r, nk) . (14)

An alternative approximation is ∆g ' g0 ∆gM; the dif-
ference to Eq. (14) marks the uncertainty in this approx-
imation. For our purpose both approximations will turn
out to be nearly equivalent. The relation between ∆g
and ∆gM cannot be evaluated exactly; for a discussion of
this problem see Ref. 7.

The potential energy for F ΨM is Epot = (N2/V ) ·∫
d3r g u. The kinetic energy can be divided into two

parts: The Jastrow factors are taken into account by
replacing u in Epot by ũ, as in Eq. (11). The kinetic
contributions due to ΨM 6= 1 lead to

∑
εknk where

εk = ~2k2/2m. Here m is an effective mass (Ref. 6)
but for simplicity we do not introduce a new symbol. We
emphasize that m 6= 0 for k → 0. This can be related
to the fact that the static structure function S(k, T ) is
finite for k→ 0 and T ' Tλ. The complete result reads

E(V,N, nk) =
〈
F ΨM

∣∣H
∣∣F ΨM

〉

=
N2

2V

∫
d3r g(r, nk) ũ(r) +

∑

k

εk nk

= E0(V,N ) + EM(V,N, nk) . (15)

The energy EM = E − E0 is obtained by inserting Eqs.
(13), (14) and (11):

EM(V,N, nk) '
∑

k

εk nk (16)

+
N2

2V

∫
d3r f(r)2 ∆gM(r, nk) ũ(r) .

The decisive contributions in ∆gM are long-ranged be-
cause the low momenta dominate near the transition. For
the intended evaluation of the critical behaviour we may
therefore use the approximation

∆gM(r, nk) ' ∆gM(0, nk) . (17)

This yields

EM(V,N, nk) =
∑

k

εk nk +
N

2

w0

v
∆gM(0, nk) , (18)

where v = V/N and

w0

v
' 1

v

∫
d3r f(r)2 ũ(r) ' 1

v

∫
d3r g0(r) ũ(r)

' 2Eg.s.

N
= −14.3 kBK . (19)

Using McMillan’s parameters5, the first integral yields
−14.8 kBK. Within the uncertainty of Eq. (14) it may
be replaced by the second integral. This integral is the
theoretical g.s. energy (11). By equating this energy to
the experimental ground state energy Eg.s. we fix the
value of w0/v.

Up to a constant, the energy EM (18) can be expressed
by

EM =
〈
ΨM

∣∣H
∣∣ΨM

〉
with

HM = −
∑

i

~2

2m
∆i + w0

∑

i<j

δ(ri − rj) . (20)

This means that within sensible approximations the en-
ergy EM in E = E0 +EM can be calculated as the expec-
tation value of a simple product state ΨM with a simple
Hamiltonian HM. It should be noted that HM is solely
introduced for evaluating EM, it cannot serve as a model
Hamiltonian in other respects. In particular the stability
of the system is guaranteed by the part E0 of the to-
tal energy E = E0 + EM; the corresponding part of the
Hamiltonian is not contained in HM.

The attractive zero-range force in HM has the following
meaning: The l.p.o. implies an enhanced probability of
finding two atoms near together. Due to the Jastrow
factors in Eq. (5) this enhancement is effective only in
the range where the realistic interaction is attractive; the
strength of this attraction is measured by w0/v. A zero-
range force can be used because for gM the enhancement
is approximately r-independent up to a few Å.

The evaluation of Eq. (20) is straightforward. The two-
body matrix elements wkq of the δ-force with the s.p.f.
(7) are given by

wkq =
〈
ϕkϕq

∣∣w0 δ(r1 − r2)
∣∣ϕkϕq

〉

=
w0

V0

3∏

i=1

[
1 +

1

2
δkiqi

]

=
w0

V0

[
1 +

1

2

3∑

i=1

δkiqi + . . .

]
. (21)

The somewhat artificial construction Eq. (7) implies p.o.
in 3 orthogonal directions. In contrast to this we as-
sume that the p.o. is actually realized in just one direc-
tion. Therefore we omit products of δ-functions in the
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last expression of Eq. (21) which originate from simulta-
neous p.o. in 2 or 3 directions. The remaining δ-terms
describe the mutual correlation of all particle with the
same momentum q in one direction. The number νq of
these particles is

νq =
∑

k2,k3

nk where k = |k| =
√
q2 + k 2

2 + k 2
3 . (22)

The obvious form of the correlation energy is Ecorr ∝∑
ν 2
q . The actual result follows from Eq. (20) with Eqs.

(21) and (22):

Ecorr(V,N, nk) =
3w0

2v

1

N
1/3

0

[
1

N2/3

(∑

q

∫
ν 2
q + 2n0ν0

)]
.

(23)

For the replacement (9) of the sum by an integral we took
into account a possible finite condensate fraction n0/N .
The index zero of n0 and ν0 stands for the lowest possible
momentum value.

The complete expression for the energy E of Eq. (15)
becomes

E(V,N, nk) = E0 + EM = E0 + EIBG +Ecorr . (24)

Here E0 = E0(V,N ) is given by Eq. (11) and EIBG by

EIBG(V,N, nk) =
∑

k

εk nk . (25)

The critical contribution in Eq. (24) is the correlation
energy Ecorr (23). In the evaluation of Eq. (20) leading
to Eq. (24) we dismissed a constant term stemming from

the constant in Eq. (21), the higher order terms (∝ N−2/3
0

or N−1
0 ) because they come from p.o. in more than one

direction, and a term ∝ n 2
0 because it is noncritical (that

means eventually negligible near the transition point).
For the finite boxes the momentum sums have to be

evaluated with ∆k = π/V
1/3

0 ; the subsequent summa-
tion over all boxes yields, however, a factor V/V0. For
plain momentum sums (without δkiqi -terms) this proce-
dure can be abbreviated by performing the common sum-
mation with ∆k = π/V 1/3. The final momentum sums
ins Eqs. (23) and (25) are performed in this common
way. This implies that the occupation numbers nk do
no longer refer to a finite box (as in Eq. (4)) but to the
macroscopic system (with V and N ). In Eq. (23) this
implies

∑
ν 2
q ∝ N5/3 and an N -independent Ecorr/N .

C. Statistical assumptions

In order to calculate the thermodynamic energy
E(T, V,N ) from Eq. (24) we need the temperature de-
pendent expectation values of the parameters of Ψ . Our
model uses the IBG expression for 〈nk〉 and treats N0

as an adjustable constant. We discuss and specify these
assumptions.

Any model of the λ-transition except the IBG intro-
duces the phase transition phenomenologically. In the
AIBG this phenomenological assumption is the use of
the expectation values 〈nk〉IBG. This assumption can be
made plausible (to some extent) by observing that the
additional contribution Ecorr in EM = EIBG + Ecorr is
small in the sense

Ecorr

EIBG
= O(y) where y =

|w0/v|N −1/3
0

kBTλ
� 1 . (26)

The actual parameter values will yield y = 0.13, Eq. (42).
For N0 →∞ or y → 0 one obtains EM → EIBG and thus
〈nk〉IBG. (The nk-independent contribution E0(V,N ) in
E is without influence on the expectation values). There-
fore, we expect 〈nk〉 = 〈nk〉IBG [ 1 + O(y) ]. The evalua-
tion of Ecorr with 〈nk〉IBG is then valid up to first order
in y; it is this contribution which yields the logarithmic
singularity. Another argument for using the 〈nk〉IBG is
that the additional term

∑
ν 2
q correlates many s.p. states

with many others, and that it will be without much in-
fluence on the occupation of a particular s.p. state.

The AIBG assumes expectation values 〈nk〉 of the IBG-
form,

〈nk〉 =
1

exp [( εk − µ)/kBT ]− 1

=
1

exp (x2 + τ2)− 1
. (27)

Here µ is the chemical potential and kB is Boltzmann’s
constant. We have introduced the dimensionless quanti-
ties τ2 = −µ/kBT and

x =
λ |k|√

4π
with λ =

2π~√
2πmkBT

. (28)

The transition temperature of the IBG is given by the
following condition for the thermal wave length λ = λ(T ):

λ(Tλ) = [ v ζ(3/2) ]
1/3

, (29)

where ζ(3/2) = 2.6124 denotes Riemann’s zeta function.
In applying the AIBG to the real system we will identify
Tλ with the actual transition temperature; formally this
can be achieved by inserting a suitable effective mass
m = m(v) in λ of Eq. (28), Ref. 3. In the following we
use the relative temperature

t =
T − Tλ
Tλ

. (30)

For t ≥ 0 the chemical potential is determined by the
particle number condition Σ

∫
nk = N . For t → 0 this

condition yields µ − ε0 → 0 and thus n0 → ∞. For
simplicity we rename µ− ε0 by µ; it is this new µ which
vanishes at t = 0 also for ε0 6= 0.
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We are interested in the critical properties. Therefore
we expand µ or, equivalently, τ for |t| � 1:

τ (t) =

√ −µ
kBT

=

{
a t+ b t2 + . . . (t > 0) ,

a′|t|+ b′t2 + . . . (t < 0) .
(31)

This expansion is directly related to the model conden-
sate fraction

〈n0〉
N

= 1− 1

N

∑∫
〈nk〉

=

{
0 (t > 0),

f |t|+ g t2 + . . . (t < 0).
(32)

The coefficients f, g, . . . are determined by a′, b′, . . .; in
particular f = 3/2+2

√
π a′/ζ(3/2). The IBG yields finite

values for a, b, . . . , and a′ = b′ = . . . = 0.
Deviating from the IBG, the AIBG admits a coefficient

a′ 6= 0 in Eq. (31) or f > 3/2 in Eq. (32). This devia-
tion is introduced phenomenologically for the following
reason: For t > 0 the evaluation of

∑
ν 2
q with 〈nk〉IBG

yields straightforwardly a logarithmic singularity. This
singularity can be directly continued to t < 0 by admit-
ting a′ 6= 0; the singularity itself does not depend on the
value for a′. The form of the expansion (31) is to some
extent plausible because of its simplicity and symmetry.
Physically a′ 6= 0 means an energy gap of a′2t2kBT for
the condensed s.p. state for t < 0.

For evaluating the thermodynamic energy we need also
the expectation values of products of nk’s. (We do not
need, however, the full statistical information contained
in the density matrix). For such products the IBG yields

〈nknq〉 = 〈nk〉〈nq〉 (k 6= q) . (33)

Compared to the IBG, the AIBG states depend on one
additional parameter, namely N0. In principle, this pa-
rameter (as well as the occupation numbers) should be
determined from the condition of minimal free energy
F yielding a temperature dependent expectation value
〈N0〉. Instead of this, we treat N0 as an adjustable con-
stant. Simplified estimates (Sec. IV A and Ref. 6) yield
a sensible value for N0 at t = 0.

III. LOGARITHMIC SINGULARITY

We evaluate the thermodynamic energy E(T, V,N ) =
〈E(V,N, nk)〉. According to Eq. (24) it is of the form

E(T, V,N ) = E0(V,N ) + EIBG(T,V,N ) + Ecorr(T,V,N ).

(34)

The term E0(V,N ) is essential for a realistic compress-
ibility but it does not contribute to the specific heat. The
energy EIBG =

∑
εk 〈nk〉 is calculated as in the IBG.

Equations (23) and (33) yield for the decisive contribu-
tion Ecorr,

Ecorr(T,V,N )

N
=

3w0

2v

1

N
1/3

0

1

N5/3

[∑∫
〈νq〉2 + 2〈n0〉〈ν0〉

]
.

(35)

Leaving away unessential constants we sketch how Ecorr

yields a logarithmic singularity: For |t| → 0 and x → 0
the occupation numbers (27) behave like 〈nx〉 ∼ 1/[x2 +
t2] and 〈νq〉 ∼

∫
dk k (k2 + q2 + t2)−1 ∼ ln(q2 + t2). It fol-

lows that 〈n0〉〈ν0〉 ∼ |t| ln |t| and Σ
∫
〈νq〉2 ∼

∫
dq [ ln(q2 +

t2) ]2 ∼ const. + |t| ln |t|.
We present now the results of the detailed calculation.

The 〈νq〉 of Eq. (22) with Eq. (27) can be evaluated an-
alytically,

〈νq〉
N2/3

=
1

N2/3

∑

k2,k3

∫
〈nk〉

= − v
2/3

λ2
ln
[
1− exp

(
−x2 − τ2

)]
. (36)

We used the dimensionless quantities τ of Eq. (31) and

x = qλ/
√

4π. The integral in Eq. (35) becomes

1

N5/3

∑∫
〈νq〉2 =

2√
π
ζ(3/2)−5/3

(
T

Tλ

)5/2

L(τ ) , (37)

where L(0) = 8.30 and

L(τ ) =

∫ ∞

0

dx
(

ln
[
1− exp

(
−x2 − τ2

)] )2
(38)

= L(0) + 4πτ ln τ + 4πτ
[

ln(2)− 1
]

+ O(τ 2) .

The expectation value 〈ν0〉 is given by Eq. (36) with x = 0
because ε0 has been absorbed in τ 2 = −(µ − ε0)/kBT
(remark after Eq. (30)). Using 〈ν0〉 ∼ ln |t|, 〈n0〉 ∼ |t|
and τ ∼ |t| we see that both terms in Eq. (35) yield a
contribution ∼ t · ln |t|. The critical (|t| � 1) behaviour
of the specific heat reads therefore

cV (T, V ) =

(
∂(E/N )

∂T

)

V

(39)

=

{
−A · ln |t|+ B + . . . (t > 0) ,

−A′ · ln |t|+B′ + . . . (t < 0) .

The detailed evaluation of Eq. (35) yields

A = A′ = 9 ζ(3/2)−2/3 |w0|
v

1

N
1/3

0

1

Tλ
. (40)

The terms depending on the parameter a′ cancel. We
insert |w0|/v of Eq. (18) and Tλ = 2.17 K in the result
(40).

Experimentally a logarithmic singularity has been
measured for cP over several decades by Ahlers8. For
saturated vapour pressure we may use cV ≈ cP . (The
consistency of a logarithmic form for both, cV and cP ,
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has been demonstrated by Lee and Puff9). The com-
parison of our result (40) with the experimental values
A ≈ A′ ≈ 0.63 kB (Eq. (48) of Ref. 8) determines the
model parameter N0,

N
1/3

0 ≈ 50 (adjusted) . (41)

This fixes also the small parameter y of Eq. (26) which
is a quantitative measure for the deviations of the AIBG
from the IBG,

y =
|w0/v|N −1/3

0

kBTλ
≈ 0.13 . (42)

Experimentally one finds a small difference between A
and A′ (Ahlers8 reports 5%) and an indication of a cut
of the logarithmic singularity (slightly negative critical
exponents8 for cP ). In the AIBG a difference between A
and A′ could be obtained if corrections to approximation
(17) are taken into account which differ for t > 0 and
t < 0. A possible cut of the singularity is connected with
the lowest possible values of the momenta.

The coefficients B and B′ in Eq. (39) can be calculated
from Eq. (35), too. They depend on the value of the pa-
rameter a′ which will be determined only later (Sec. V C).
Moreover a generalization of the s.p.f. to be introduced
in Sec. IV C will yield another contribution to the jump
in B′ −B.

IV. PHASE ORDERING

We review various aspects of the p.o. assumed in the
AIBG. First we show that this p.o. is favoured by the free
energy (Sec. IV A). Then we review the necessity of the
localization of the s.p.f. for obtaining finite correlation
effects due to p.o. (Sec. IV B); this leads to the notion
that the coherence range of p.o. approaches infinity at
the transition point. Finally (Sec. IV C) we connect the
p.o. with a potential superfluid flow.

A. Free energy due to phase ordering

The l.p.o. leads to a lower energy, Ecorr/N ∼ (w0/v)·
N
−1/3

0 < 0. At the same time such an ordering reduces
the entropy, ∆S(p.o.) < 0. We show that ∆S(p.o.) is
relatively small and that p.o. is therefore favoured by the
free energy.

Arbitrary phases in Eq. (2) are statistically equivalent
to an equal weight of the two independent choices for
the phase, φ0 as in Eq. (3) or φ0 + π/2. We consider
p.o. in just one direction. For each k we have then two
s.p. states. The number of possible distributions of nk
bosons on 2 states is nk + 1. The p.o. requires that
all nk bosons go into the same s.p. state; compared to
a statistical distribution this implies the entropy change
∆s(p.o.) = −kB ln(nk + 1). On the other hand, the nk

atoms gain by p.o. the energy ∆e(p.o.) ∼ (Ecorr/N )nk.
The free energy change ∆f is then

∆f(p.o.) ∼ − |w0|
v N

−1/3
0

nk + kBT ln(nk + 1) . (43)

In spite of the smallness (42) of the considered corre-
lations the p.o. is favoured (∆f(p.o.) < 0) as soon as
nk � 1. The boson property of the atoms is decisive for
this conclusion: It implies that |∆s| is not proportional to
nk but only to lnnk ; this behaviour may be paraphrased
by ‘bosons like to go into the same state’. For the rel-
evant lowest s.p. states (k ' 0) the condition nk � 1
is fulfilled for t � 1. Thus p.o. will indeed be adopted
when the transition point is approached (t→ 0+).

As a simplification our ansatz (4) assumes p.o. for all
s.p.f. Summing over all momenta and including numeri-
cal factors one finds then Ecorr ' T∆S(p.o.) for T ' Tλ
and for the N0 of Eq. (41). Reversely, the condition
Ecorr ∼ Tλ ∆S(p.o.) constitutes a rough theoretical es-
timate for the model parameter N0, leading to an N0 of
the order (41).

B. Phase coherence volume

In the Introduction we argued that for finite correlation
effects due to p.o. the s.p.f. have to be localized. We
review this point and find that the localization is not
required for the lowest s.p. state. We present then an
estimate for the extension of this lowest s.p.f.; within
this extension the p.o. will be coherent.

The finiteness of the correlation energy (∝ N
−1/3

0 ) is

due to the finite spacing ∆k = π/V
1/3

0 of the q-values in
the sum Ecorr ∼

∑
ν 2
q . Nonlocalized s.p.f. would lead to

the same Ecorr provided that only s.p. states with

qn = q0 + n ·∆k, (n = 0, 1, 2, . . .) . (44)

are occupied. In the macroscopic system the possible q-
values are, however, dense, and the entropy drives the
particles into the occupation of all available states. This
is the reason why a finite ∆k can be realized only for
s.p.f. localized within a volume V0 = (π/∆k)3.

This argument shows that we may either start from
finite volumes or from finite ∆k, the second feature fol-
lows from the first one. There is, however, one difference:
Starting from the finite spacing ∆k in Eq. (44), the nat-
ural condition for the lowest q-value is q0 < ∆k. The
corresponding s.p.f. can then not be localized within V0;
as just stated there is also no such need for a localization
for the required correlation effect.

In view of this we introduce the following modifica-
tion of the states (4): Only the s.p.f. with qn>0 are lo-
calized within V0, the s.p.f. with q0 have a larger ex-
tension. We present a crude estimate for the volume
Vc of the lowest s.p.f. ϕ0 which becomes the conden-
sate state for t < 0: Let Vc be some multiple of V0,
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that means Vc = WV0. In a volume Vc there are W
s.p. states below ∆k out of which only one is occupied.
A redistribution of the n0 atoms over these W states
would increase the entropy by ∆s ' kB ln(n0)W . At
the same time these atoms would loose their correla-
tion energy, ∆e ∼ n0|w0/v|N −1/3

0 . The stability con-
dition Tλ ∆s < ∆e yields an upper bound for W . Using
〈n0(t > 0)〉 ∼ t−2 and 〈n0(t > 0)〉 = O(N ) we obtain

Vc(t) = W V0 ∼ V0 ·
{
t−2 (t > 0) ,

∞ (t < 0) .
(45)

This result means the following: Without changing our
previous calculations we can modify the states (4) in such
a way that the lowest s.p.f. ϕ0 has the large and even-
tually infinite volume Vc, whereas the s.p.f. with qn > 0
are localized. This modification of Eq. (4) has important
consequences:

1. Within the volume Vc the direction of p.o. is defined
by ϕ0. Therefore, Vc(t) of Eq. (45) is the phase
coherence volume of the considered p.o.

2. The p.o. constitutes a symmetry breaking because
in an infinite system the atoms are free to adopt
arbitrary phases φj in Eq. (2). (The average over
the size and shape of finite boxes (assumed in Sec.
II A) does not restore this symmetry). The result
(45) means that this symmetry breaking changes
its character from local to global at the transi-
tion point. Approaching the transition point (t →
0+) the directions of p.o. of neighbouring V0’s get
aligned, and for t < 0 the coherence is potentially
infinite.

3. Strictly finite and separated boxes imply a momen-
tum cut at ∆k and consequently a cut of the log-
arithmic singularity. This cut would be described
by a lower bound ∆k in the integral in Eq. (9). For
Eq. (44) we revise the replacement Eq. (9) of the
momentum sums by integrals:

〈 ∑

qn=q0+n·∆k
. . .

〉

q0

' 1

∆k

∫ ∞

q0,min

dq . . . . (46)

The brackets indicate an average over possible q0’s
with q0 ≤ ∆k. The lowest value for q0 is deter-
mined by Eq. (45). A lower bound q0,min ∼ t2 (for
t > 0) of the integral does not lead to a cut of the
logarithmic singularity.

C. Complex phase ordering

The phenomenon of superfluidity can be explained by
assuming a macroscopic wave function ψ. The phase Φ(r)
of the complex ψ yields the velocity vs = (~/m)∇Φ of
a potential superfluid flow. In the AIBG the condensed

particles for a macroscopic wave function for t < 0, too,
Eq. (45). In order to join the common description we
replace the real s.p.f. ϕ0 by the complex s.p.f.:

ϕ̄0 = ϕ0 exp [ iΦ(r)] . (47)

This replacement does not affect the previous calcula-
tions; moreover, the Jastrow factors in Eq. (5) are with-
out influence on a flow due to ∇Φ 6= 0. With Eq. (47)
all results obtained from the assumption of a macroscopic
wave function apply to our model, too. Besides this basic
conformity the AIBG leads, however, also to a peculiar
modification which will be discussed in the following.

In an IBG-like model (with 〈n0〉 ∼ |t| or β = 1/2) we
have to assume that noncondensed particles contribute
to the superfluid density ρs in order to get agreement
with the experiment (ρs ∼ |t|2/3 or ν = 1/3). The con-
sidered p.o. should in some way imply that noncondensed
particles move coherently with the condensate. We intro-
duce the possibility of a net current of the noncondensed
particles by replacing the original real s.p.f. ϕk by

ϕ̄k = ϕk exp [ iΦk(r)] . (48)

A coherent motion with the condensate can now be de-
scribed by the condition Φk = Φ. We call this condition
complex phase ordering (c.p.o.) named after the com-
plex phase factors in Eqs. (47) and (48). In contrast
to this the p.o. (3) will be called real phase ordering
(r.p.o.). We note two points: The spatial correlations
of the s.p.f. are unchanged by the replacement (47), (48)
because |ϕ|2 = |ϕ̄|2. Secondly, for a coherent macroscopic
flow it is sufficient that the field Φ(r) is macroscopic; it
is then not necessary that all contributing s.p.f. are of
macroscopic range.

The replacement (47) is suggested by the familiar pic-
ture of a superfluid, and Eq. (48) with Φk = Φ is nec-
essary to reconcile β = 1/2 (model) with ν = 1/3 (ex-
periment). The fairly straightforward introduction of the
phase factors (47) and (47) determines the crucial model
prediction for Ss 6= 0. The fit to the experimental ρs

determines the extent of the c.p.o. and consequently Ss.
Presenting a peculiar prediction like Ss 6= 0 we feel

obliged to make it quantitative. For this purpose we have
to write down explicit expressions for ρs and Ss. This
requires additional assumptions which are introduced by
plausibility arguments. As explained in the last section,
the quantitative result for Ss will not depend sensitively
on these assumptions because the model expression for
ρs is fitted to the experiment.

We require that the new modes Φk do not destroy the
correlation energy due to the r.p.o.; this determines the
extent of the c.p.o. The field Φ(r) contains degrees of
freedom which will be thermally excited. Let kc(t) be
the average amount of the momenta of this field

kc(t) =
〈 ∣∣∇Φ(r)

∣∣ 〉 . (49)

Because of |ϕ|2 = |ϕ̄|2 the fields Φ and Φk do not directly
influence the spatial correlations. However, for Φk ≡ 0
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the noncondensed states k with εk < ~2k 2
c /2m would

have a lower energy than the condensate state. This
would invalidate the assumption about the occupation
pattern and destroy the correlation energy. On the other
hand, for k � kc the Φk will have only minor influence
on the occupation pattern. Simplifying and quantifying
this qualitative argument leads to the following condition
for c.p.o.:

Φk(r) =

{
Φ(r) (k < kc) ,

arbitrary (k > kc) .
(c.p.o.) (50)

This condition means that the localized s.p.f. with k < kc

adopt within their range the (macroscopically defined)
phase Φ of the condensate. The physical reason for this
c.p.o. is that the correlations due to the r.p.o. (favoured
by the free energy) must not be destroyed; in this way
the real and complex p.o. are connected to each other.

V. SUPERFLUID DENSITY

A. AIBG expression

Using the new s.p.f. (47) and (48) the states (5) become
for t < 0:

Ψ = F S
(
ϕ0 exp [ iΦ(r)]

)n0
∏

k,vol

(
ϕk exp [ iΦk(r)]

)nk
.

(51)

For these states we evaluate the quantum mechanical ex-
pectation value of the current operator. Taking into ac-
count the c.p.o. (50) we obtain

j(r, nk) =

〈
Ψ

∣∣∣∣
~
2 i

N∑

j=1

∇j δ(r − rj) + c.c.

∣∣∣∣Ψ
〉

(52)

=
ρ

N

~
m

[(
n0 +

∑

k<kc

∫
nk

)
∇Φ(r) +

∑

k>kc

∫
nk∇Φk(r)

]
.

All derivatives of the real functions (F , ϕ0 and ϕk)
are cancelled by the complex conjugate (c.c.) term;
the only surviving contributions are the phase deriva-
tives. Each such derivative is accompanied by a factor
〈Ψ |δ(r − rj)|Ψ 〉 = ρ(r)/(Nm). The mass density ρ is
assumed to be a constant in the following.

The contributions of the nonordered phases are aver-
aged out statistically. This is also the case for the ther-
mal excitations of the Φ-field, 〈∇Φth 〉 = 0. A coherent
nonvanishing flow can only be obtained by an additional
nonequilibrium contribution Φs to Φ,

Φ = Φth + Φs . (53)

The flux due to Φs might be relatively stable if it is
small enough10. This implies |∇Φs| � kc where kc =
〈 |∇Φth| 〉.

Using Eq. (53) and 〈∇Φth 〉 = 0 we evaluate the statis-
tical expectation value of Eq. (52). Writing 〈 js〉 = ρsvs

with vs = (~/m)∇Φs we obtain for ρs:

ρs

ρ
=

1

N

(
〈n0〉+

∑

k<kc

∫
〈nk〉

)
=
ρ0 + ρc

ρ
. (54)

This is the AIBG expression for the superfluid density.
In a number of points we summarize its implications:

1. The density ρs is composed by all atoms adopt-
ing the phase Φ(r). It consists of the condensate
density ρ0 and the comoving density ρc. The tem-
perature dependence of this composition (Fig. 1) is
obtained by fitting Eq. (54) to the data. The co-
moving density ρc has an internal structure which
implies a nonvanishing entropy Ss 6= 0 of the super-
fluid component.
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FIG. 1. Composition of the superfluid density ρs/ρ (solid
line) according to Eq. (54). The ratio ρs/ρ is the sum of
the model condensate ρ0/ρ (short dashes) and the coherently
comoving density ρc/ρ (dash-dotted line). Also shown is the
simplest 1-parameter fit ρs/ρ = a1 |t|2/3 (long dashes). In the
given scale the fitted ρs/ρ (solid line) coincides with the data.

2. Expression (54) is the simplest possibility to ac-
count in an IBG-like model with 〈n0〉 ∼ |t| for
ρs ∼ |t|2/3. Fitting Eq. (54) to the experimental ρs

fixes kc(t), and consequently the difference between
the densities ρ0 and ρs and the model prediction for
Ss 6= 0.

3. The reproduction of the data with Eq. (54) requires
asymptotically kc(t) ∼ |t|2/3. Theoretically this
asymptotic form is made plausible in Sec. IV B. It
leads to a certain functional form of ρs which yields
excellent fits to the experimental data (Sec. V C).

4. The result (54) contains a specific picture for the
relation between the condensate fraction nc and the
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superfluid fraction ρs/ρ. The explanation of super-
fluidity is based on the assumption of a macroscopic
wave function. This connection implies, however,
an open question: What is the quantitative rela-
tion between nc(T ) and ρs(T )/ρ, and in particular
the relation between the T = 0 values nc ≈ 0.1
(see Ref. 11) and ρs/ρ = 1 ? The AIBG pro-
poses the following picture: The model condensate
nc,M = 〈n0〉/N = ρ0/ρ is the fundamental quan-
tity. It is depleted by the Jastrow factor F in Eq.
(51) to the real condensate nc, for T = 0 the value
nc,M = 1 is reduced to nc ≈ 0.1. The factor F
in Eq. (51) does, however, not deplete the current
due to phase factors. Therefore nc,M → 1 implies
ρs/ρ → 1. On the other hand, for |t| � 1 the
contribution ρc � ρ0 dominates ρs.

B. Effective Ginzburg-Landau model

Ginzburg and Sobyanin12 have proposed an effective
Ginzburg-Landau functional for the free energy FGL as
a function of the order parameter field ψ. In this ansatz
singular coefficients (like |t|4/3 for the |ψ|2 term) are in-
troduced in order to yield the right critical exponents.
We follow this kind of approach for investigating the re-
lation between the critical exponents of the order param-
eter and the superfluid density. This detour is, however,
not required for the final result for Ss (see point 2 of Sec.
V A).

For discussing the fluctuations of the Φ-field we define
the order parameter field by

ψ =

√
n0

V
exp [ iΦ(r)] . (55)

For a definite phase the state (51) must be replaced by
the appropriate coherent state13. This means that n0 in
Eq. (55) has to be understood as a quantum mechanical
expectation value of the occupation number n0 in such a
coherent state.

The statistical expectation value 〈n0〉 ∼ |t| can be
obtained by minimizing the common Landau energy
FL/V = Rt |ψ|2 +U |ψ|4 (with regular coefficients R and
U ). Adding a naive kinetic energy term (~2/2m)|∇ψ|2
leads to a violation of scaling invariance and to wrong
critical exponents. The decisive feature of the AIBG ex-
pression (54) is that the mass density comoving with ∇Φ
is ρ0 + ρc instead of ρ0 = m〈 |ψ|2〉 alone. This suggests
the following effective Ginzburg-Landau ansatz

FGL

V
=
~2

2m

ρs

ρ0

∣∣∇ψ
∣∣2 +Rt

∣∣ψ
∣∣2 + U

∣∣ψ
∣∣4 . (56)

Leaving away unessential constants, the asymptotic be-
haviour of the mass density ρc in Eq. (54) is

ρc ∼
∫

k<kc

d3k

k2 + t2
∼ kc . (57)

This, ρ ' ρc for |t| → 0 and Eq. (49) determine the
asymptotic kinetic energy in Eq. (56),

ρs

ρ0

〈
|∇ψ|2〉 =

ρc

m

〈
|∇Φ|2〉 ∼ k 3

c . (58)

Scaling this kinetic part of FGL with 〈FL〉 ∼ t2 yields

kc ∼ |t|2/3 . (59)

This implies ρs ∼ ρc ∼ |t|2/3 and a singular mass coeffi-
cient ρs/ρ0 ∼ |t|−1/3 in Eq. (56). Therefore, Eq. (56) is
an effective Ginzburg-Landau ansatz in the same sense as
the one by proposed by Ginzburg and Sobyanin12. Equa-
tion (56) demonstrates how the critical exponent β = 1/2
(from 〈n0〉 ∝ 〈|ψ|2〉 ∼ |t|2β) can be connected to ν = 1/3
(from ρs ∼ |t|2ν) on account of the comoving density ρc.
The divergent mass coefficient damps the critical fluctu-
ations such that Eq. (56) becomes scaling invariant (this
is discussed in more detail in Ref. 14). The scaling in-
variance implies that Eq. (56) might be used down to
|t| = 0 and that the critical exponent of kc and ρs might
be indeed exactly 2/3. This possibility is supported by
the excellent fits obtained from Eq. (54) with Eq. (59).

C. Fit to the experimental data

We insert the leading τ = a′ |t| and kc = k1|t|2/3 in Eq.
(54). This yields

ρs

ρ
= a1 |t|2/3 + a2 |t|+ a3 |t|4/3 + . . . (MAS) . (60)

With 3 parameters we take this as our asymptotic model
fit, called MAS. Figure 2 shows that MAS yields an excel-
lent reproduction of the data by Greywall and Ahlers15

(GA), for saturated vapour pressure.
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FIG. 2. Asymptotic model fit of the superfluid density.
The differences between the 3-parameter fit formula Eq. (60)
and the data points are compared to two standard deviations
(dashed lines).
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The 3-parameter standard fit (SF) used by GA is

ρs

ρ
= a1 |t|a2

(
1 + a3 |t|1/2 + . . .

)
(SF) . (61)

We compare both fits, MAS and SF, by calculating the
sums χ2 of the quadratic deviations:

χ2
SF

χ2
MAS

' 10 (|t| ≤ 0.03) . (62)

This shows that the reproduction shown in Fig. 2 is not
a trivial result; in the considered range (|t| ≤ 0.03) the
data cannot be reproduced by SF. We remark that SF
(but probably also other 3-parameter fits) fit the data in
the considerably smaller range |t| ≤ 0.004; this range is
used by GA for the fit. The range |t| ≤ 0.03 seems to
be appropriate for a 3-parameter fit because already a
1-parameter fit (a1|t|2/3) roughly reproduces the data in
this range (see Fig. 1).

The applicability range of Eq. (54) can be considerably
extended by using the following 4-parameter expansion
for τ and kc:

τ (t) = a′ |t|, xc(t) = x1 |t|2/3 + x2 |t|+ x3 |t|4/3 .
(63)

The form of xc = λkc(t)/
√

4π suggests itself because it
leaves the expansion (60) unchanged. The 4-parameter
model fit, Eq. (54) with Eq. (63), reproduces the data
down to 1 K within the experimental errors. The fit yields
the parameter values a′ = 3.019, x1 = 2.7028, x2 =
−0.837 and x3 = −3.842; these values have been used
for Fig. 1. More details of this fit and a discussion with
respect to the quasi-particle picture are given in Ref. 14.

The fit to the experimental data fixes the decompo-
sition of ρs into ρ0 and ρc. This decomposition is the
starting point for the evaluation of the superfluid entropy
Ss.

VI. SUPERFLUID ENTROPY

A. Model prediction

In ρs = ρ0+ρc only the condensate part ρ0 corresponds
to a macroscopic wave function and has thus zero entropy
content. The comoving part ρc is made up by different
s.p.f. (however with the same phase factor in Eq. (48))
and has therefore a nonvanishing entropy content. We
determine this entropy.

We start with the well-known entropy expression S(nk)
for a Bose gas with occupation numbers nk. The IBG
equilibrium entropy SIBG is obtained from this expres-
sion by SIBG = 〈S(nk)〉 = S(〈nk〉IBG). In Sec. IV A
we have discussed that for r.p.o. in one direction only
every second s.p. state is occupied. Since the total par-
ticle number N =

∑
nk is fixed we have to put twice as

many atoms in every second state (as compared to the
plain IBG expression). This leads to the following model
entropy SM,

SM(T, V,N ) =
kB

2

∑

k

[(
1 + 2〈nk〉

)
ln(1 + 2〈nk〉)

− 2〈nk〉 ln(2〈nk〉)
]
. (64)

For t = 0 this yields SM/N = 0.96 kB instead of
SIBG/N = 1.28 kB. The difference ∆S(p.o.) = SIBG−SM

has been compared to ∆E(p.o) in Sec. IV A. For t < 0
the 〈nk〉 with τ (t) of Eq. (63) will be used in Eq. (64).
The resulting overall behaviour of SM(T ) is then —in
contrast to SIBG(T )— similar to that of the experimen-
tal entropy S(T ).

The entropy of the superfluid component is Sc = S(ρc).
For calculating Sc we have to restrict the sum in Eq. (64)
by k < kc, and to account for the c.p.o. (50). Prescribing
the phase field Φk for each s.p.f. in Eq. (48) implies a two
to one restriction for each of the three directions of∇Φk.
For each s.p. state k this reduces the entropy by kB ln 8
(as long as nk � 1). With these specifications we obtain

Sc(T, V,N ) =
kB

2

∑

k<kc

[(
1 + 2〈nk〉

)
ln(1 + 2〈nk〉)

− 2〈nk〉 ln(2〈nk〉) − ln 8
]
. (65)

The ratio Sc/SM is the AIBG prediction for the super-
fluid entropy fraction Ss/S,

Ss

S
=

Sc

SM
. (66)

The calculated result is shown in Fig. 3.
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FIG. 3. Model prediction for the superfluid entropy Ss as
a function of the temperature. The figure displays the ratios
Ss/S (dashed line) and (Ss/Ns)/(S/N) (solid line) both multi-
plied by a factor 100. The error bars indicate the uncertainty
of the fit parameters in Eq. (63). The prediction becomes
increasingly uncertain for |t| > 0.1 because the calculation is
based on an asymptotic expansion (63).

10



B. Experimental detectability

We show that the AIBG prediction for Ss 6= 0 is at the
border of present-day experimental detectability. The
most prominent experiment showing that Ss = 0 (or at
least Ss ≈ 0) is the fountain pressure (FP) measurement.
For two containers of liquid helium connected by a su-
perleak a temperature difference dT produces a pressure
difference dP . Admitting Ss 6= 0 this FP is given by

(
dP

dT

)

FP

=
S

V

(
1− Ss/Ns

S/N

)
. (67)

For Ss = 0 this reduces to the well-known London rela-
tion. The correction term is Ss/S multiplied by N/Ns =
ρ/ρs; the model prediction for it is shown in Fig. 3.

The most accurate FP measurements are that by
Singsaas and Ahlers16. These authors assume the valid-
ity of the London relation and interpret their experiment
as an entropy measurement. For this entropy SFP ,

SFP

V
=

(
dP

dT

)

FP

(68)

they find within the errors no deviation from the true
(caloric) entropy S. The absolute values of S near Tλ
are, however, uncertain by about 2% (Refs. 16,17).

TABLE I. Comparison between the caloric (S) and the
fountain pressure (SFP) entropy. The input is the experimen-
tal SFP(t) and Cp(t); the quantity ∆S = Sλ −S is calculated
from Cp. The last column shows the resulting marginal evi-
dence for S 6= SFP or, equivalently, for Ss 6= 0.

1 2 3 4 5

|t| ρ SFP

J cm−3 K−1

SFP

NkB

SFP + ∆S

NkB

100(S − SFP)

S

0.0006906 0.2299 0.7571 0.7619 ± 0.0008 0.07 ± 0.11
0.000790 0.2296 0.7561 0.7615 ± 0.0008 0.11 ± 0.11
0.001013 0.2294 0.7555 0.7623 ± 0.0008 0.02 ± 0.11
0.001794 0.2275 0.7493 0.7607 ± 0.0009 0.23 ± 0.11
0.003177 0.2250 0.7411 0.7601 ± 0.0010 0.30 ± 0.13
0.005662 0.2208 0.7274 0.7592 ± 0.0011 0.43 ± 0.14
0.01007 0.2145 0.7069 0.7596 ± 0.0013 0.39 ± 0.17
0.03338 0.1854 0.6116 0.7578 ± 0.0021 0.74 ± 0.34
0.07973 0.1407 0.4648 0.7547 ± 0.0034 1.63 ± 0.71

The theoretical prediction of Fig. 3 suggests that one
should compare the temperature dependences of S and
SFP near Tλ rather than the absolute values. This is done
in Table I in a number of steps:

1. We start with the experimental values16 for SFP

in column 1 and 2. By using ρ(t) from equation
(A1) of Ref. 18 we relate the entropy to the particle
number rather than to the density (column 3).

2. For column 4 we calculated ∆S = Sλ − S(T ) =∫
dT CP/T from the experimental specific heat CP

of Ref. 8. If SFP were equal to S then column
4 should show the temperature independent Sλ =
S(Tλ).

3. From the temperature dependence of column 4 we
deduce Sλ/N = 0.7624 kB as the limit of SFP + ∆S
for t→ 0−. Then

S − SFP

S
=
Sλ − [SFP(t) + ∆S(t)]

Sλ −∆S(t)
=
Ss/Ns

S/N
, (69)

may be calculated from column 4. The last equality
in Eq. (69) follows from Eqs. (67) and (68). Column
5 displays the resulting experimental evidence (or
nonevidence) for SFP 6= S.

4. The errors included in the Table are the statistical
errors16 of 0.1% for SFP(t), and a 1% error for CP .
The systematic errors16 of SFP(t) are not included;
they should be less important because we consider
only the t-dependence (and not the absolute values)
in a relatively small interval.

Figure 4 compares column 5 of the Table with our the-
oretical prediction. There seems to be some indication of
a deviation S 6= SFP(t). The error bars (from the Table)
show, however, that the experimental evidence for such a
deviation is at most marginally significant. In any case,
the compilation of Table I and Fig. 4 shows that, and in
which way, our theoretical prediction is within the reach
of experimental detectability.
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FIG. 4. Difference between the caloric (S) and the fountain
pressure (SFP) entropy (dots with error bars, from column 5 of
Table 1). This difference is compared to the model prediction
(solid line) for (Ss/Ns)/(S/N).

VII. CONCLUDING REMARKS

We have proposed a microscopic model for the λ-tran-
sition of liquid helium. The model uses phenomenologi-
cal assumptions, in particular the transition itself is in-
troduced by the analogy to the IBG. The basic idea of
the AIBG is that phase ordering leads to an extra en-
ergy ∼ ∑ν 2

q which —evaluated with the IBG occupa-
tion numbers— yields a logarithmic singularity. In this
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model the superfluid density is not identical to the square
of the order parameter field (ρs 6= m |ψ|2). A fit to the
experimental ρs leads to the model prediction for a non-
vanishing superfluid entropy Ss.

The model is hardly related to standard models of liq-
uid helium which are either microscopic variational ap-
proaches (like Refs. 3,19) or the Landau-Wilson renor-
malization group theory20. Because of its novelty and
originality our model cannot compete in quality of foun-
dation, exactness and completeness with those other the-
ories. It leads, however, to specific predictions about the
structure of ρs. These predictions are without compe-
tition by other approaches and they can and should be
tested experimentally. Therefore the presentation of the
model seems appropriate in spite of a number of unsolved
questions concerning the model assumptions.

In contrast to other approaches the AIBG offers also
a possible solution of the so-called microscopic prob-
lem of liquid helium. This problem was formulated by
Uhlenbeck21: If ρs is identified with a single quantum
state (ρs = m |ψ|2) then the approach to equilibrium
(ρs = ρs(T )) cannot be understood. In the AIBG this
problem is solved by the contribution of noncondensed
particles to the superfluid density.

† This paper was published in Nuovo Cimento 13 D (1991)
211. It has now been put onto the e-print server because
the original source is not readily available. For later work
related to the model presented here see cond-mat/9507037,
cond-mat/9507038, cond-mat/9901175, cond-mat/0001048
and cond-mat/0106237.
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