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|. DECAY CONSTANT

A. Introduction

Cluster radioactivity is the spontaneous decay of nuclei by the emission of clusters
like for examplex-particles, C-, Ne-, Mg- or Si-nuclei. The spontaneous emission
of clusters heavier tham-particles is called exotic decay.

The traditionale-decay theory can be extended to the exotic deéaysAf-
ter a short presentation of the underlying physical model we define and evaluate
Gamow’s decay constant and the spectroscopic factor (this section). In Section Il
the model expression for the decay constant is applied to a representative sample of
exotic decays. The results are further discussed in Section Ill. This handbook article
is restricted to the basic formulae. It contains, however, all information necessary
for the easy application to other decays.

We consider the decay of a nucleus with+ a) nucleons andZ + z) protons

A+a(Z+Z) N AZ+aZ. (1)

In the energy regime of interest, the nuclei are well described as many-body sys-
tems of nucleons. The bound many-body wave functions of the parent and daughter
nucleus and of the emitted cluster are denoted by

¢A+a ’ ¢A ’ ¢a- (2)

The open exit channel in (1) is made up Yy and¢,. The decay is due to the
coupling of the initial state 4, to this exit channel. The process is treated in the
following model: With a certain probability the parent nucleus wave function
da+q lies in the open channel spagg ® ¢,. Only this part of the wave function
contributes to the decay (1). Within the spaceR ¢, the problem reduces to a one-
body problem, that means to the determination of the relative motion between the
daughter nucleus and the emitted cluster. The relative motion amplitude penetrates
through the Coulomb barrier and determines the decay constant.

This model leads to a decay constant of the form

A =AgS, (3)

where the spectroscopic fact®is the probability of finding the structuggy ® ¢,

in the parent nucleus, and; is the Gamow decay constant of the reduced one-
body problem. The information about the many-body structure is contained in the
spectroscopic factor. The half-life is given by=In2/A.

B. Gamow Decay Constant

In this subsection we evaluate the one-body decay consgaramow’s one-body
model explains the Geiger Nuttall law, i.e. the strong variation of the half-lives with
the decay energy. In some form it is contained in every approach &md exotic
decays, including macroscopic fission models.



The decay constanis can be evaluated with sufficient accuracy by using the
semiclassical WKB approximation

Ro 2
Aezé exp<—2/R_ dR\/h—’;[V(R)—EaA]). (4)

This decay constant is the product of the knocking frequeney v/2R; and the
barrier penetrability. The inner and outer turning poRjtandR,, are determined by
the condition that the potenti®(R) equals the tunneling enerdy;, 4. The reduced
mass of the emitted fragments is denoteddyor the fragment interaction we use
the semiempirical heavy ion potential

50MeV R,R R,+ Ry —R Ze?
V(R) = — aZA ex("Jr A )+Z€

fm R,+ Ry d R (5)
d=063fm  R,=(1233n"2-09782"3)fm, n=aorA

fitted to elastic scattering dataThis potential can be applied to-decay and to
exotic decays as well. At the inner turning poRiitthe two fragments are just be-
ginning to feel the nuclear interaction. In (4) the potentidlR) is used for radii

R > R; only, i.e. for radii where it is reasonably well determined from scattering
experiments.

If the angular momentum of the emitted cluster is known a centrifugal term
might be added to (5). However, such a term — as well as the deviation of the
Coulomb potential from Ze?/ R — has only a negligible effect on the barrier pene-
trability; therefore these contributions are omitted.

The tunneling energ¥, 4 is given by

Eqp = (Mata — Ma — M) ¢ — E* (6)

The M; are the rest masses of the bare nuclei stripped from electrons. Since usually
the masses of neutral atoms are li§tdte extracted?-values have to be corrected
for the small electronic binding energiésThis small correction has some effect
on Ag because the penetrability depends sensitively on the tunneling energy. The
tunneling energy (6) is diminuished by a possible excitation enétfyof the frag-
ments.

In the interior @ < R;) the kinetic energy. v?/2 equals approximately the
potential depth. A realistic potential depth is of the orde25 MeV corresponding
to a 100 MeV deep-nucleus-potential. The knocking frequency becomes then

- 25 MeV
po L [ 25MeV -
2R, 2R,

The frequency is nearly constant for all decay modes since the reduced mass
scales roughly witha.



The results of the WKB approximation (4)—(7) have been compared to exact
solutions of the Scludinger equation of the reduced one-body probfethhas
been found that in the considered range of fragments and decay energies the error
is less than a factor of two. This is comparable to the uncertainty due to the specific
choice of the potentidV (R).

C. Spectroscopic Factor

In this subsection we define the spectroscopic faston the basis of the many-
body states (2). The structure of the resulting expression and explicit numerical
evaluations lead to a semiempirical approximate formulaStofhis formula al-
lows a unified (valid for different cluster sizes) and simple description of favoured
decays.

The open channel state describes the relative motion of the clystarsdg .
It is therefore a superposition of the basis states

(r1, oo Faga-11R) = A(8(R —raa) ¢u Pa) (8)

with different values oR. In coordinate space the stat&s depend oA +a — 1)
coordinates which are equivalent to ttee— 1) internal coordinates of the daughter
nucleusp,, the (a — 1) internal coordinates of the emitted fragment and the rela-
tive motion coordinate, 4. Due to the antisymmetrizatiod the statesR) are not
normalized

(RIR') = (1-K)

rr =0R-R)— KR, R). (9)

We define the projection operatﬁronto the open channel spagd )}

D 3 3p/ 1 ) /
P_de/dR IR) <—1—I?R,Rf<R|' (10)

The inverse of the norm operator1K guarantees tha? 2 = P; this condition is
a necessity for a projection operator. Tdpectroscopic factor

S = <¢A+a | ﬁ} ¢A+a> (11)

equals the percentage to which the stajg, lies in the space, ® ¢, spanned
by (8). In other words, it is the quantum mechanical probability of finding the open
channel structure preformed in the parent nucleus. Theréfonay also be called
preformation probability.

Cluster spectroscopic factors found in the literature before 1975 neglect the ef-
fect of the norm operator; they are indeed obtained from (11) and (10)kvithO.
The operator (10) witlk = 0 is, however, no longer a projection operator, and
consequently (11) is not a properly defined quantum mechanical probability. The
neglect of the proper normalization results in spectroscopic factors which are too
small by many orders of magnitude for heavy fragments.



After a suitable choice for the many-body wave functions (2) the spectroscopic
factor (11) is fixed and may be calculated. Such microscopic calculations have been
presented for-decay?® and forl*C-decayt The many-body states employed are
those of the spherical nuclear shell model including configuration mixing. These
calculations lead to the following orders of magnitude for the spectroscopic factor:

1072 21229 o + 208pp
1078 22Ra— 12C + 21%pp
S~ 1010 22434 _, 14C 4 210pp, (12)

1071 226Th — 160 + 210pp

The calculated numbers férandig of (4) yield decay constants= Ag S which
are of the right absolute size.

The performance of microscopic calculations is rather tedious, in particular be-
cause of the appearance of the norm operaterfi in (10). Therefore, we intro-
duce a bulk spectroscopic factor which is simple to comprehend, easy to handle,
and which covers the whole variety of favoured decays.

The spectroscopic factor (11) can be related to the squared product of the over-
laps between the single particle stategjrand the upper ones by ., forming the
fragment® The product contains effectively— 1 single particle overlaps because
¢, depends om — 1 internal coordinates. This structure implies that many single
particle states contribute 1 and thatS will roughly scale with thga — 1)-st pow-
er of the square of a single particle overlap. The first point suggests to use a bulk
formula. The second point indicates that, compared-g&pectroscopic factors,,
the spectroscopic factors for heavier fragments should scale like

Spuik = S, Y/3  (bulk spectroscopic factar) (13)

The numerical expense of microscopic calculations, the uncertainties originating
from the choice of the nuclear many-body wave functions, and the relatively large
number of contributing single particle functions justify the use oflibié spectro-

scopic factor for practical purposes. This will be done in the following.

The bulk spectroscopic factor will not be applicable to cases governed by specif-
ic structure effects. By specific structure effects we mean for example that the sym-
metry of the wave functions forbids the considered decay. For many-body states,
such decays are normally not exactly forbidden but theyiandered or unfavoured,
an example will be discussed in section Ill.A. For these unfavoured decays, eq. (3)
together with the original spectroscopic factor (11) has to be used. The bulk expres-
sion (13) is adequate for the so-called favoured decays only.

II. RESULTS

Eq. (3) with (4) and (13) yields the final expression for the decay constant

Atheor = )\G(EaA) Sa(a_l)/s . (14)



The sensitive dependences By and ona are explicitly displayed but not the less
sensitive ones oA andZ. The input of the theoretical decay constant is completely
fixed by the following quantities:

e Mass and proton numbers of the fragmentsZ, a andz.

e Asymptotic energyt, 4 of the relative motion of the fragments.
e Semiempirical potential’ (R) as defined in (5).

e One parametes,.

The parametes$, is determined by a fit to even favoured decays ugp te 28:
Sy =6.3-1073 (15)

In the presented form the theoretical expression (14) contains just one adjustable
parameter. Moreover, the fitted value (15) is in good agreement with theoretical and
experimental-spectroscopic factors in the Pb region.

Eq. (14) constitutes anified description of cluster radioactivity, ranging from
a-decay to exotic decays in a wide range. It displays the systematic dependence on
the mass and proton numbers, and on the tunneling energy. Judging from the results,
the decay constantneoris applicable at least up to fragment masses 34.

According to the introduction of the bulk spectroscopic factor (13) the applica-
tion of (14) is restricted tdavoured decays only. For unfavoured decays (i.e. for
specific structure effects) eq. (3) with (11) is the valid expression.

In previous publications we used two different paramet&g, and Soqq, for
even and odd decays, respectivefyThe fit for Soqq contained, however, some
ambiguity because the fine structure of odd decays is in most cases not resolved
experimentally. The measured decay constant of an odd decay might be a mixture
of favoured decays (suppressed by a lowgk and thus a smaller penetrability) and
unfavoured decays. We therefore decided to apply (14) to favoured decays only.

Since the expression for the theoretical decay constant can be easily evaluated
we do not present an exhaustive list of decay constants. For a convenient application
of our formula we offer two possibilities:

1. On request the computer code realizing (14) is available for an IBM compat-
ible PC-AT on a % " discette (360 kB or 1.2 MB).

2. In the Appendix the expression (14) is further simplified. The resulting for-
mula may be evaluated in a few steps on a hand-pocket calculator.

Table 1 contains a representative sample of decays from even parent to even daugh-
ter nuclei which are always favoured. All considered decays go to the fragment
ground states, i.e£®* = 0. For the experimental data we refer the handbook con-
tribution by Bonetti et al® and references therein. Some of these decays have been
correctly predicted by our formula prior to the experimént.
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The last entry {®Ar-decay) in Table 1 is probably outside the validity range of
our model. The bulk spectroscopic factor (13) scales exponentially with the frag-
ment numbet. With increasing fragment size the decay probability will eventually
become unmeasurably small. In particular, our model cannot be extended to fission
processes; fission is due to a different mechanism.

Table 2 and 3 present decays of odd parent nuclei to ground-state and to excited
states of the daughter nucleus. Possible excitations of the cluster require more en-
ergy than that of the daughter nucleus. The lowest excitations are, therefore, those
of the daughter nucleus; only these excitations are considered. All theoretical half-
lives in Table 2 and 3 are calculated with the parameter (15) fixed by a fit to known
even decays. Therefore, the calculatggdyrare valid predictions only if the specific
decay isfavoured. For the experimental values we refer again to Bor&tti.

In most cases the fine structure of the odd decay is not resolved experimentally.
Then it is not known to which specific daughter nucleus state the measured half-
life should be attributed to. In these cases we adopt the following procedure: We
assume that the measured decay is a favoured one. The experimental halilife
is attached tentatively to the specific transition suggesteghby: Accordingly we
classify decays into lower states as hindered or unfavoured. The sensibility of this
procedure is verified in the case of tH€-decay of?3Ra with known fine structure
(section I11.A).

[ll. DISCUSSION

A. Fine Structure

The presented evaluation of (3) refers to spherical nuclei; the microscopic calcu-
lations use spherical shell model functions, argis evaluated with the spherical
potential (5). In spite of these simplifications, the expression (14) reproduces well
the gross features of the considered decays. The deformation is obviously of minor
importance for the overall behaviour.

For a detailed consideration of structure effects the deformation has, however,
to be taken into account. On the microscopic level this can be done by using Nilsson
shell model states which are classified by the usual quantum nurkilFérén,, A].

The transitions between states with different Nilsson quantum numbers are sup-
pressed because the overlaps contained in the spectroscopic factor (11) are zero or
at least particularly small. Such decays are unfavoured.

The fine structur of the 1“C-decay of?2°Ra has been discussed by Husson-
nois et al.1? Following Hussonnois et al. we discuss the fine structure of this decay
(shown in Figure 1) with respect to our model. Most decays (81%) lead to the first
excited state of%°Pb at 0778 MeV although the penetrability for the decay to the
ground state is 32 times larger. This phenomenon is clearly connected to structure
effects, that means to the spectroscopic factor. The parent nu&@s may be
described in the rotor model by the mixed parity doubl™3[631] ® [761]. The
ground and excited states of the daughter nuci€izb have the quantum numbers
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of the odd neutron in a single particle level of the spherical shell model outside
the lead core. In contrast to the ground state, the first two excited states contain
substantial componenty 3" [631] and 32~ [761], respectively? Therefore we
expect that the transitions to these excited states are favoured by the internal struc-
ture.

Using the form (3) we determine experimental spectroscopic factors from

Sexp = hexp . (16)

AG

Gamow’s decay constang is calculated using the tunneling energigs; given in
Table 2; the excitation energies are taken into account according to (6). The resulting
experimental spectroscopic factors (given in Figure 1) reflect the discussed structure
effects: The decay to the ground state is unfavoured, the decays to the first excited
states are favoured. For the favoured decays our bulk spectroscopicSagtos
(6.3-1073)1%3 = 2.9.1071%from (13) and (15) agrees well withiyp.

From the experimental spectroscopic factor we see that the transition to the
ground state is hindered by a factor of 150. For a microscopic description of this
decay we have, in principle, to go back to the original expression (11). Microscop-
ic evaluations of (11) for unfavoured decays are, however, difficult. They require
the knowledge of the specific nuclear structure in terms of the many-body wave
functions of the parent and the daughter nucleus. In addition the quite different de-
formations of these nuclei complicate such calculations.

As already discussed, one could try to use a bulk formula for unfavoured decays,
too, using a separate paramefgryntay instead of (15). However, the degree of
unfavouredness (due to the specific microscopic structure effects) is likely to be
quite different for various nuclei. It is therefore doubtful whether a bulk formula
like (13) with an extra fit parametey, untav makes sense for unfavoured decays. No
such attempt is made in this paper.

An evaluation of (11) for each specific final state appears not feasible. Irrespec-
tive of this restriction our model provides a qualitative understanding of the fine
structure.

B. Other Approaches

The generalization of the microscopicdecay theory leads to a successfull and
consistent model of cluster radioactivity. This does not exclude the possibility of
other descriptions. The obvious alternative is the treatment of exotic decays as an
extremely asymmetric cold fissidnAll existing fission models for exotic decay
are restricted to one or few macroscopic degrees of freedom; in this sense they are
macroscopic models. These models might be derived microscopically by evaluat-
ing the potential landscape and the inertial parameters starting from a many-body
Hamiltonian.

In fission models, the deformation energy of the fissioning nucleus is para-
metrized versus the distance between the fragment centers or some related quan-
tity. For separated fragments the deformation energy becomes the Coulomb plus



the centrifugal potential. The penetration of the classically forbidden deformation
barrier determines the fission probability. The tunneling is usually calculated using
the semiclassical WKB approximation. This leads to a decay corﬂs@iﬂ“which

is of the same form (4) as oug.

The experimental decay constants are reproduced by)\gSSiO” in the fission
models and by = Ag S in our approach. The preformation probabilities are quite
small numberss = 10710 ... 10-23 (for C- to Si-decay). In order to reproduce the
data the fission models must use much larger potential barriers than the ones given
by (5). Effectively, our preformation probability is replaced by the penetration
factor due to an additional barrier inside the Coulomb barrier. Poenar atitak-
pret this additional penetration factor as the cluster preformation probability in the
fission model.

Compared to fission models our approach has the advantage of using only the
outer, rather well-known part of the nuclear potential. Besides this well-known po-
tential part, our model contains only one parameter which determines all preforma-
tion probabilities. Moreover, this model appears to be the appropriate starting point
for discussing structure effects (previous subsection).

V. SUMMARY

The excellent agreement with experimental data strongly supports the underlying
physical assumption of the presented model: The decay constants S is given

by the one-body decay constang times the preformation probability. From

a- to Si-decay this preformation probability varies over more than 20 orders of
magnitudes. The absolute size of this factor and its variation can be understood
microscopically.

The presented model provides a unified description of cluster decays covering a
range of emitted fragment mass numbers feom 4 toa = 34, with half-lives from
10115 to 13°s, and with branching ratios relative dedecay from 10° to 101,

In addition, the model provides a qualitative understanding of the fine structure
effects.

The theoretical expression (14) for the decay constant may be readily applied to
any wanted decay. Because of the excellent reproduction of known decay rates it is
well-suited for an unambiguous prediction of yet unmeasured decay constants.

APPENDIX

In this Appendix we provide @imple analytical formula for the decay constant.

This hand-pocket formula may be used éodecay and all exotic decays. For this
purpose the realistic potential (5) is simulated by a square well with a suitable ra-
dius R;. The nearlya-independent knocking frequeney= v/(2R;) is fixed to an
appropriate numerical value. The resulting decay constant is then given by

Mheor ™ v S @V exp—21), v=30-10"s?t, §,=63-103. (17)
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The penetration integral for the pure Coulomb potential can be evaluated analyti-
cally. It yields

2
[ =zZé° 5 ad { arccos(v/x ) — vx — x2 } (18)
AcE x4
with
R E
T zIZ—eZA Ri=ro(a"®+AY%),  ro=1.286 fm.

In addition one need#?/(2ufm? = 209MeV (A + a)/(aA) and ¢2/fm =
1.44 MeV. The number for the reduced mass takes into account the mass defect
in an average way (adjusteddo= 12).
The input for the decay constant (17)4sZ, a, z, andE ;4 of (6). Up toa = 34
all decay constants of (14) are reproduced within a factor of 3.
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223Ra ; 14C + 209Pb Sexp
3/2* [631]] ® [761]
ey
: 1j15/2 3-10°1°
0.778 MeV 1i]_]_/2 29. 10—10
ground state 2 19.10-12

Abbildung 1: Fine structure of th#"C-decay of?3Ra. The decays to the first two
excited states of°Pb are favoured. The experimental spectroscopic fadigss
are determined from (16). For the favoured decays they are reproduced by eq. (13)

with (15) yieldingSpuk = 2.9-10~10. The transition to the ground-state is hindered
by a factor of 150.



Avaz+z) — 4z + AZ Eqa log ttheor 109 Texp
222Ra — 12c +210pp  29.16 16.6
— 1c + 208pp  33.16 11.7 11.0
224Ra — 1c + 219pp  30.65 16.3 15.9
226Ra — Mc + 2pp 2832 21.1 21.2
— 200 + 206Hg  40.97 26.6
224Th —» 1c + 219pg  33.06 13.6
— 160 + 208pp  46.64 15.0
226Th — 1c + 22pg  30.68 18.0
—» 180 + 208pp 4589 18.2
228Th — 1c + 2Mpg 2834 23.0
—» 200 + 208pp  44.87 21.8 20.8
230Th — 200 + 21pp  41.96 26.9
— 220 + 208pp 4334 26.6
— 2Ne +2%%Hg 57.96 24.8 24.6
282Th —  2®Ne +20%Hg  56.15 29.3 >279
230y — 14c + 2R 28.47 24.7
—> 22Ne + 208pp  61.59 20.4
—> 2Ne + 2%pp  61.55 22.2
232 —> 2Ne + 208pp 6250 20.8 21.1
—s Mg + 20%Hg 7454 25.3
234y — 2Ne + 2%pp  59.03 25.5 26.0
— Mg + 2%%Hg  74.35 25.4 25.5
236y —> 2Ne + %2%pp  56.15 29.8
—> 25Ne + 219pp  56.94 30.6
—s Mg + 06Hg  72.73 29.1
236py —> 28Mg + %%pp  79.90 21.3 21.7
238py — Mg + 20%Pp  76.16 25.6 057
—> 30Mg + 08pp  77.26 25.8 125
—>  32gj + 206Hg  91.47 25.8 25.3
240Cm —» 32gj + 208pp 97.83 21.8
—» 3gj + 205pp 91.31 27.3
252t —  4Ar + 2084 127.1 29.9

Tabelle 1: The theoretical valuegeor Of (14) are compared to the measured half-
lives!? Texp fOr decays from even parent to even daughter nuclei which are always

13

favoured. The energieB, 4 are given in MeV, the half-lives in seconds. The

theoretical and experimental values agree generally within a factor of 5; only for

228Th — 200 4 298pp the theoretical half-life is ten times too large.



14

A+a(Z+Z) — 9z Az Eua IC)Q‘L'theor IOg'L'exp
22y — 1c + 20771 31.40 14.1
31.05 14.7
30.06 16.7 > 1538
221Ra —» 1c + 207pp 3250 13.0
31.93 14.0
31.60 146 > 144
30.87 16.0
223Ra — 1Cc + 209 3196 13.8
31.18 15.3 15.2
30.54 16.5
30.39 16.8
225M¢ —» 14c + 211gj  30.59 17.3 17.2
30.19 18.1
29.83 18.9
229Th — Mc + 25pg 2722 25.7
26.94 26.3
26.92 26.4
26.81 26.7
—» 200 + 209pp 4357 24.0
42.79 25.4
42.15 26.6
42.00 26.9
—> %Ne + 20Hg 58.02 24.7
57.65 25.3
57.56 25.4
56.17 27.6
231pg —> 2Ne + 20771 60.61 22.2
60.26 22.7 23.4
59.27 24.1

Tabelle 2: Cluster radioactive decays from odd parent nuclei to daughter nu-
clei which are in the ground-state or in selected excited states. The difference
Eq a(0.s.) — E, a(excit) between the tunneling energies is given by the excita-
tion energyE$* of the daughter nucleus. The calculated half-livggor apply to
favoured transitionsonly. Since the fine structure is usually not resolved, the exper-
imental half-livesrexp are attached tentatively to favoured transitions in accordance
with our calculation. Decays into lower states are then hindered or unfavoured.
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Atz 4+7) — @z o+ Az Eqa l0g Ttheor 109 Texp
233y —> 2Ne + 2%pp  60.69 23.2
59.91 24.3 24.8
59.27 25.2
59.12 25.4
—s Mg + 20Hg  74.47 25.3
74.10 25.8
74.01 25.9
72.62 27.7
235 —> 2Ne + 21pp 5755 27.7 27.4
—> 2Ne + 209pp  58.30 28.4
57.52 29.7
56.88 30.7
56.73 31.0
— Mg + 0Hg  72.42 27.8
23'Np —s Mg + 0711 75.25 27.1
74.90 275 > 273
73.92 28.8
2Py — Mg +2%Hg 9111 27.6
90.74 28.1
90.65 28.2
89.26 29.8
241Am —» 3Mgj + 207 9421 255 > 253
93.86 25.9
92.87 27.0
243Cm  —» 3Sj + 209pp 9505 25.9
94.27 26.7
93.62 27.4
93.48 27.6
231py — 2 + 208pp 5201 247 > 246
49.40 29.1
48.81 30.1
233 —> 2Ne + 298pp  60.94 23.7
58.33 27.6
57.74 28.5
235 —> 2Ne + 2pp  58.02 27.9 27.4
57.24 29.2
56.94 29.6

Tabelle 3: Continuation of Table 2. The last entries are decays where the emitted
cluster is odd.



