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I. DECAY CONSTANT

A. Introduction

Cluster radioactivity is the spontaneous decay of nuclei by the emission of clusters
like for exampleα-particles, C-, Ne-, Mg- or Si-nuclei. The spontaneous emission
of clusters heavier thanα-particles is called exotic decay.

The traditionalα-decay theory can be extended to the exotic decays.1,2,3 Af-
ter a short presentation of the underlying physical model we define and evaluate
Gamow’s decay constant and the spectroscopic factor (this section). In Section II
the model expression for the decay constant is applied to a representative sample of
exotic decays. The results are further discussed in Section III. This handbook article
is restricted to the basic formulae. It contains, however, all information necessary
for the easy application to other decays.

We consider the decay of a nucleus with(A + a) nucleons and(Z + z) protons

A+a(Z + z) −→ AZ + az. (1)

In the energy regime of interest, the nuclei are well described as many-body sys-
tems of nucleons. The bound many-body wave functions of the parent and daughter
nucleus and of the emitted cluster are denoted by

φA+a , φA , φa. (2)

The open exit channel in (1) is made up byφA andφa . The decay is due to the
coupling of the initial stateφA+a to this exit channel. The process is treated in the
following model: With a certain probabilityS the parent nucleus wave function
φA+a lies in the open channel spaceφA ⊗ φa . Only this part of the wave function
contributes to the decay (1). Within the spaceφA ⊗φa the problem reduces to a one-
body problem, that means to the determination of the relative motion between the
daughter nucleus and the emitted cluster. The relative motion amplitude penetrates
through the Coulomb barrier and determines the decay constant.

This model leads to a decay constant of the form

λ = λG S, (3)

where the spectroscopic factorS is the probability of finding the structureφA ⊗ φa

in the parent nucleus, andλG is the Gamow decay constant of the reduced one-
body problem. The information about the many-body structure is contained in the
spectroscopic factor. The half-life is given byτ = ln 2/λ.

B. Gamow Decay Constant

In this subsection we evaluate the one-body decay constantλG. Gamow’s one-body
model explains the Geiger Nuttall law, i.e. the strong variation of the half-lives with
the decay energy. In some form it is contained in every approach toα- and exotic
decays, including macroscopic fission models.4
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The decay constantλG can be evaluated with sufficient accuracy by using the
semiclassical WKB approximation

λG ≈ v

2Ri
exp

(
− 2

∫ Ro

Ri

dR

√
2µ

h̄2

[
V (R) − EaA

] )
. (4)

This decay constant is the product of the knocking frequencyν = v/2Ri and the
barrier penetrability. The inner and outer turning point,Ri andRo, are determined by
the condition that the potentialV (R) equals the tunneling energyEaA. The reduced
mass of the emitted fragments is denoted byµ. For the fragment interaction we use
the semiempirical heavy ion potential

V (R) = −50 MeV

fm

RaRA

Ra + RA

exp

(
Ra + RA − R

d

)
+ zZe2

R

d = 0.63 fm, Rn = (
1.233n1/3 − 0.978n−1/3 )

fm, n = a or A

(5)

fitted to elastic scattering data.5 This potential can be applied toα-decay and to
exotic decays as well. At the inner turning pointRi the two fragments are just be-
ginning to feel the nuclear interaction. In (4) the potentialV (R) is used for radii
R ≥ Ri only, i.e. for radii where it is reasonably well determined from scattering
experiments.

If the angular momentum of the emitted cluster is known a centrifugal term
might be added to (5). However, such a term – as well as the deviation of the
Coulomb potential fromzZe2/R – has only a negligible effect on the barrier pene-
trability; therefore these contributions are omitted.

The tunneling energyEaA is given by

EaA = (
MA+a − MA − Ma

)
c2 − Eex. (6)

TheMi are the rest masses of the bare nuclei stripped from electrons. Since usually
the masses of neutral atoms are listed6 the extractedQ-values have to be corrected
for the small electronic binding energies.7 This small correction has some effect
on λG because the penetrability depends sensitively on the tunneling energy. The
tunneling energy (6) is diminuished by a possible excitation energyEex of the frag-
ments.

In the interior (R ≤ Ri ) the kinetic energyµ v2/2 equals approximately the
potential depth. A realistic potential depth is of the ordera · 25 MeV corresponding
to a 100 MeV deepα-nucleus-potential. The knocking frequency becomes then

ν = v

2Ri
=

√
a · 25 MeV

2µR 2
i

. (7)

The frequencyν is nearly constant for all decay modes since the reduced massµ

scales roughly witha.
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The results of the WKB approximation (4)–(7) have been compared to exact
solutions of the Schr¨odinger equation of the reduced one-body problem.3 It has
been found that in the considered range of fragments and decay energies the error
is less than a factor of two. This is comparable to the uncertainty due to the specific
choice of the potentialV (R).

C. Spectroscopic Factor

In this subsection we define the spectroscopic factorS on the basis of the many-
body states (2). The structure of the resulting expression and explicit numerical
evaluations lead to a semiempirical approximate formula forS. This formula al-
lows a unified (valid for different cluster sizes) and simple description of favoured
decays.

The open channel state describes the relative motion of the clustersφa andφA.
It is therefore a superposition of the basis states

〈r1, ..., rA+a−1 | R 〉 = A (
δ(R − raA) φa φA

)
(8)

with different values ofR. In coordinate space the states|R〉 depend on(A+ a − 1)

coordinates which are equivalent to the(A− 1) internal coordinates of the daughter
nucleusφA, the(a − 1) internal coordinates of the emitted fragment and the rela-
tive motion coordinateraA. Due to the antisymmetrizationA the states|R〉 are not
normalized

〈 R | R′ 〉 = (
1 − K̂

)
R,R′ = δ(R − R′) − K(R, R′) . (9)

We define the projection operator̂P onto the open channel space{| R 〉}

P̂ =
∫

d3R

∫
d3R′ | R 〉

(
1

1 − K̂

)
R,R′

〈 R′ | . (10)

The inverse of the norm operator 1− K̂ guarantees that̂P 2 = P̂ ; this condition is
a necessity for a projection operator. Thespectroscopic factor

S = 〈
φA+a

∣∣ P̂ ∣∣ φA+a

〉
(11)

equals the percentage to which the stateφA+a lies in the spaceφA ⊗ φa spanned
by (8). In other words, it is the quantum mechanical probability of finding the open
channel structure preformed in the parent nucleus. ThereforeS may also be called
preformation probability.

Cluster spectroscopic factors found in the literature before 1975 neglect the ef-
fect of the norm operator; they are indeed obtained from (11) and (10) withK̂ = 0.
The operator (10) witĥK = 0 is, however, no longer a projection operator, and
consequently (11) is not a properly defined quantum mechanical probability. The
neglect of the proper normalization results in spectroscopic factors which are too
small by many orders of magnitude for heavy fragments.
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After a suitable choice for the many-body wave functions (2) the spectroscopic
factor (11) is fixed and may be calculated. Such microscopic calculations have been
presented forα-decay8,9 and for14C-decay.1 The many-body states employed are
those of the spherical nuclear shell model including configuration mixing. These
calculations lead to the following orders of magnitude for the spectroscopic factor:

S ∼


10−2 212Po→ α + 208Pb
10−8 222Ra→ 12C + 210Pb
10−10 224Ra→ 14C + 210Pb
10−11 226Th → 16O + 210Pb

(12)

The calculated numbers forS andλG of (4) yield decay constantsλ = λG S which
are of the right absolute size.

The performance of microscopic calculations is rather tedious, in particular be-
cause of the appearance of the norm operator 1− K̂ in (10). Therefore, we intro-
duce a bulk spectroscopic factor which is simple to comprehend, easy to handle,
and which covers the whole variety of favoured decays.

The spectroscopic factor (11) can be related to the squared product of the over-
laps between the single particle states inφa and the upper ones inφA+a forming the
fragment.3 The product contains effectivelya − 1 single particle overlaps because
φa depends ona − 1 internal coordinates. This structure implies that many single
particle states contribute toS, and thatS will roughly scale with the(a − 1)-st pow-
er of the square of a single particle overlap. The first point suggests to use a bulk
formula. The second point indicates that, compared toα-spectroscopic factorsSα,
the spectroscopic factors for heavier fragments should scale like

Sbulk = S (a−1)/3
α (bulk spectroscopic factor). (13)

The numerical expense of microscopic calculations, the uncertainties originating
from the choice of the nuclear many-body wave functions, and the relatively large
number of contributing single particle functions justify the use of thebulk spectro-
scopic factor for practical purposes. This will be done in the following.

The bulk spectroscopic factor will not be applicable to cases governed by specif-
ic structure effects. By specific structure effects we mean for example that the sym-
metry of the wave functions forbids the considered decay. For many-body states,
such decays are normally not exactly forbidden but they arehindered or unfavoured;
an example will be discussed in section III.A. For these unfavoured decays, eq. (3)
together with the original spectroscopic factor (11) has to be used. The bulk expres-
sion (13) is adequate for the so-called favoured decays only.

II. RESULTS

Eq. (3) with (4) and (13) yields the final expression for the decay constant

λtheor = λG(EaA) S (a−1)/3
α . (14)
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The sensitive dependences onEaA and ona are explicitly displayed but not the less
sensitive ones onA andZ. The input of the theoretical decay constant is completely
fixed by the following quantities:

• Mass and proton numbers of the fragments,A, Z, a andz.

• Asymptotic energyEaA of the relative motion of the fragments.

• Semiempirical potentialV (R) as defined in (5).

• One parameterSα.

The parameterSα is determined by a fit to even favoured decays up toa = 28:

Sα = 6.3 · 10−3 (15)

In the presented form the theoretical expression (14) contains just one adjustable
parameter. Moreover, the fitted value (15) is in good agreement with theoretical and
experimentalα-spectroscopic factors in the Pb region.

Eq. (14) constitutes aunified description of cluster radioactivity, ranging from
α-decay to exotic decays in a wide range. It displays the systematic dependence on
the mass and proton numbers, and on the tunneling energy. Judging from the results,
the decay constantλtheor is applicable at least up to fragment massesa ∼ 34.

According to the introduction of the bulk spectroscopic factor (13) the applica-
tion of (14) is restricted tofavoured decays only. For unfavoured decays (i.e. for
specific structure effects) eq. (3) with (11) is the valid expression.

In previous publications we used two different parameters,Seven andSodd, for
even and odd decays, respectively.2,3 The fit for Sodd contained, however, some
ambiguity because the fine structure of odd decays is in most cases not resolved
experimentally. The measured decay constant of an odd decay might be a mixture
of favoured decays (suppressed by a lowerEaA and thus a smaller penetrability) and
unfavoured decays. We therefore decided to apply (14) to favoured decays only.

Since the expression for the theoretical decay constant can be easily evaluated
we do not present an exhaustive list of decay constants. For a convenient application
of our formula we offer two possibilities:

1. On request the computer code realizing (14) is available for an IBM compat-
ible PC-AT on a 514

′′ discette (360 kB or 1.2 MB).

2. In the Appendix the expression (14) is further simplified. The resulting for-
mula may be evaluated in a few steps on a hand-pocket calculator.

Table 1 contains a representative sample of decays from even parent to even daugh-
ter nuclei which are always favoured. All considered decays go to the fragment
ground states, i.e.Eex = 0. For the experimental data we refer the handbook con-
tribution by Bonetti et al.10 and references therein. Some of these decays have been
correctly predicted by our formula prior to the experiment.2
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The last entry (46Ar-decay) in Table 1 is probably outside the validity range of
our model. The bulk spectroscopic factor (13) scales exponentially with the frag-
ment numbera. With increasing fragment size the decay probability will eventually
become unmeasurably small. In particular, our model cannot be extended to fission
processes; fission is due to a different mechanism.

Table 2 and 3 present decays of odd parent nuclei to ground-state and to excited
states of the daughter nucleus. Possible excitations of the cluster require more en-
ergy than that of the daughter nucleus. The lowest excitations are, therefore, those
of the daughter nucleus; only these excitations are considered. All theoretical half-
lives in Table 2 and 3 are calculated with the parameter (15) fixed by a fit to known
even decays. Therefore, the calculatedτtheorare valid predictions only if the specific
decay isfavoured. For the experimental values we refer again to Bonetti.10

In most cases the fine structure of the odd decay is not resolved experimentally.
Then it is not known to which specific daughter nucleus state the measured half-
life should be attributed to. In these cases we adopt the following procedure: We
assume that the measured decay is a favoured one. The experimental half-lifeτexp

is attached tentatively to the specific transition suggested byτtheor. Accordingly we
classify decays into lower states as hindered or unfavoured. The sensibility of this
procedure is verified in the case of the14C-decay of223Ra with known fine structure
(section III.A).

III. DISCUSSION

A. Fine Structure

The presented evaluation of (3) refers to spherical nuclei; the microscopic calcu-
lations use spherical shell model functions, andλG is evaluated with the spherical
potential (5). In spite of these simplifications, the expression (14) reproduces well
the gross features of the considered decays. The deformation is obviously of minor
importance for the overall behaviour.

For a detailed consideration of structure effects the deformation has, however,
to be taken into account. On the microscopic level this can be done by using Nilsson
shell model states which are classified by the usual quantum numbersKπ [N nz �].
The transitions between states with different Nilsson quantum numbers are sup-
pressed because the overlaps contained in the spectroscopic factor (11) are zero or
at least particularly small. Such decays are unfavoured.

The fine structure11 of the 14C-decay of223Ra has been discussed by Husson-
nois et al..12 Following Hussonnois et al. we discuss the fine structure of this decay
(shown in Figure 1) with respect to our model. Most decays (81%) lead to the first
excited state of209Pb at 0.778 MeV although the penetrability for the decay to the
ground state is 32 times larger. This phenomenon is clearly connected to structure
effects, that means to the spectroscopic factor. The parent nucleus223Ra may be
described in the rotor model by the mixed parity doublet 3/2± [631] ⊗ [761]. The
ground and excited states of the daughter nucleus209Pb have the quantum numbers
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of the odd neutron in a single particle level of the spherical shell model outside
the lead core. In contrast to the ground state, the first two excited states contain
substantial components 3/2+ [631] and 3/2− [761], respectively.12 Therefore we
expect that the transitions to these excited states are favoured by the internal struc-
ture.

Using the form (3) we determine experimental spectroscopic factors from

Sexp = λexp

λG
. (16)

Gamow’s decay constantλG is calculated using the tunneling energiesEaA given in
Table 2; the excitation energies are taken into account according to (6). The resulting
experimental spectroscopic factors (given in Figure 1) reflect the discussed structure
effects: The decay to the ground state is unfavoured, the decays to the first excited
states are favoured. For the favoured decays our bulk spectroscopic factorSbulk =
(6.3 · 10−3)13/3 = 2.9 · 10−10 from (13) and (15) agrees well withSexp.

From the experimental spectroscopic factor we see that the transition to the
ground state is hindered by a factor of 150. For a microscopic description of this
decay we have, in principle, to go back to the original expression (11). Microscop-
ic evaluations of (11) for unfavoured decays are, however, difficult. They require
the knowledge of the specific nuclear structure in terms of the many-body wave
functions of the parent and the daughter nucleus. In addition the quite different de-
formations of these nuclei complicate such calculations.

As already discussed, one could try to use a bulk formula for unfavoured decays,
too, using a separate parameterSα,unfav instead of (15). However, the degree of
unfavouredness (due to the specific microscopic structure effects) is likely to be
quite different for various nuclei. It is therefore doubtful whether a bulk formula
like (13) with an extra fit parameterSα,unfav makes sense for unfavoured decays. No
such attempt is made in this paper.

An evaluation of (11) for each specific final state appears not feasible. Irrespec-
tive of this restriction our model provides a qualitative understanding of the fine
structure.

B. Other Approaches
The generalization of the microscopicα-decay theory leads to a successfull and
consistent model of cluster radioactivity. This does not exclude the possibility of
other descriptions. The obvious alternative is the treatment of exotic decays as an
extremely asymmetric cold fission.4 All existing fission models for exotic decay
are restricted to one or few macroscopic degrees of freedom; in this sense they are
macroscopic models. These models might be derived microscopically by evaluat-
ing the potential landscape and the inertial parameters starting from a many-body
Hamiltonian.

In fission models, the deformation energy of the fissioning nucleus is para-
metrized versus the distance between the fragment centers or some related quan-
tity. For separated fragments the deformation energy becomes the Coulomb plus
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the centrifugal potential. The penetration of the classically forbidden deformation
barrier determines the fission probability. The tunneling is usually calculated using
the semiclassical WKB approximation. This leads to a decay constantλfission

G which
is of the same form (4) as ourλG.

The experimental decay constants are reproduced byλ = λfission
G in the fission

models and byλ = λGS in our approach. The preformation probabilities are quite
small numbers,S = 10−10 ... 10−23 (for C- to Si-decay). In order to reproduce the
data the fission models must use much larger potential barriers than the ones given
by (5). Effectively, our preformation probabilityS is replaced by the penetration
factor due to an additional barrier inside the Coulomb barrier. Poenaru et al.4 inter-
pret this additional penetration factor as the cluster preformation probability in the
fission model.

Compared to fission models our approach has the advantage of using only the
outer, rather well-known part of the nuclear potential. Besides this well-known po-
tential part, our model contains only one parameter which determines all preforma-
tion probabilities. Moreover, this model appears to be the appropriate starting point
for discussing structure effects (previous subsection).

IV. SUMMARY

The excellent agreement with experimental data strongly supports the underlying
physical assumption of the presented model: The decay constantλ = λG S is given
by the one-body decay constantλG times the preformation probabilityS. From
α- to Si-decay this preformation probability varies over more than 20 orders of
magnitudes. The absolute size of this factor and its variation can be understood
microscopically.

The presented model provides a unified description of cluster decays covering a
range of emitted fragment mass numbers froma = 4 toa = 34, with half-lives from
10−11s to 1025s, and with branching ratios relative toα-decay from 10−9 to 10−16.
In addition, the model provides a qualitative understanding of the fine structure
effects.

The theoretical expression (14) for the decay constant may be readily applied to
any wanted decay. Because of the excellent reproduction of known decay rates it is
well-suited for an unambiguous prediction of yet unmeasured decay constants.

APPENDIX

In this Appendix we provide asimple analytical formula for the decay constant.
This hand-pocket formula may be used forα-decay and all exotic decays. For this
purpose the realistic potential (5) is simulated by a square well with a suitable ra-
diusRi . The nearlya-independent knocking frequencyν = v/(2Ri) is fixed to an
appropriate numerical value. The resulting decay constant is then given by

λtheor ≈ ν S (a−1)/3
α exp(−2I) , ν = 3.0 · 1021 s−1 , Sα = 6.3 · 10−3 . (17)
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The penetration integral for the pure Coulomb potential can be evaluated analyti-
cally. It yields

I = zZe2

√
2µ

h̄2EaA

{
arccos

(√
x

) −
√

x − x2
}

(18)

with

x = Ri EaA

zZe2
, Ri = r0

(
a1/3 + A1/3 )

, r0 = 1.286 fm .

In addition one needs̄h2/(2µ fm2) = 20.9 MeV(A + a)/(aA) and e2/fm =
1.44 MeV. The number for the reduced mass takes into account the mass defect
in an average way (adjusted toa = 12).

The input for the decay constant (17) isA, Z, a, z, andEaA of (6). Up toa = 34
all decay constants of (14) are reproduced within a factor of 3.



11

REFERENCES

1 Blendowske, R., Fliessbach, T. and Walliser, H., Microscopic calculation of the14C decay
of Ra nuclei,Nucl. Phys. A, 464, 75, 1987

2 Blendowske, R. and Walliser, H., Systematics of cluster-radioactive-decay constants as sug-
gested by microscopic calulations,Phys. Rev. Lett., 61, 1930, 1988

3 Blendowske, R., Fliessbach, T. and Walliser, H., Fromα-decay to exotic decays – a unified
model,Z. Phys. A – Hadrons and Nuclei, 339, 121, 1991

4 Poenaru, D. N. and Greiner, W., Fission approach toα-decay. . . , andreferences therein,in
this handbook

5 Christensen, P. R. and Winther, A., The evidence of the ion-ion potentials from heavy ion
elastic scattering,Phys. Lett. B, 65, 19, 1976

6 Wapstra, A. H. Audi, G., The 1983 atomic mass evaluation,Nucl. Phys. A, 432, 1, 1985

7 Huang, K. N., Aoyagi, M., Chen, M. H., Crasemann, B., Mark, H., Neutral-atom electron
binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations,At. Data
and Nucl. Data Tables 18, 243, 1976

8 Fliessbach, T. and Mang, H. J., On absolute values ofα-decay rates,Nucl. Phys. A, 263,
75, 1976

9 Tonozuka, I. and Arima, A., Surfaceα-clustering andα-decay of212Po , Nucl. Phys. A,
323, 45, 1979

10 Bonetti, R., Chiesa, C., Guglielmetti, A. and Migliorino, C., Experiments on fragment ra-
dioactivities. . . , andreferences therein,in this handbook

11 Hourani, E., Hussonnois, M., Carbon decay and fine structure. . . , in this handbook

12 Hussonnois, M., Le Du, J. F., Brillard, L. and Ardisson, G., Possible cluster preformation
in the14C decay of223Ra ,Phys. Rev. C 42, R495, 1990



12

223Ra −→ 14C + 209Pb Sexp

3/2± [631] ⊗ [761]
1.566 MeV
1.422 MeV

0.778 MeV

ground state

3d5/2
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1i11/2
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S
S
S
S
S
S
S
S
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Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
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Abbildung 1: Fine structure of the14C-decay of223Ra. The decays to the first two
excited states of209Pb are favoured. The experimental spectroscopic factorsSexp

are determined from (16). For the favoured decays they are reproduced by eq. (13)
with (15) yieldingSbulk = 2.9 ·10−10. The transition to the ground-state is hindered
by a factor of 150.
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A+a(Z + z) −→ az + AZ EaA logτtheor logτexp

222Ra −→ 12C + 210Pb 29.16 16.6
−→ 14C + 208Pb 33.16 11.7 11.0

224Ra −→ 14C + 210Pb 30.65 16.3 15.9
226Ra −→ 14C + 212Pb 28.32 21.1 21.2

−→ 20O + 206Hg 40.97 26.6
224Th −→ 14C + 210Po 33.06 13.6

−→ 16O + 208Pb 46.64 15.0
226Th −→ 14C + 212Po 30.68 18.0

−→ 18O + 208Pb 45.89 18.2
228Th −→ 14C + 214Po 28.34 23.0

−→ 20O + 208Pb 44.87 21.8 20.8
230Th −→ 20O + 210Pb 41.96 26.9

−→ 22O + 208Pb 43.34 26.6
−→ 24Ne + 206Hg 57.96 24.8 24.6

232Th −→ 26Ne + 206Hg 56.15 29.3 > 27.9
230U −→ 14C + 216Rn 28.47 24.7

−→ 22Ne + 208Pb 61.59 20.4
−→ 24Ne + 206Pb 61.55 22.2

232U −→ 24Ne + 208Pb 62.50 20.8 21.1
−→ 28Mg + 204Hg 74.54 25.3

234U −→ 24Ne + 210Pb 59.03 25.5 26.0
−→ 28Mg + 206Hg 74.35 25.4 25.5

236U −→ 24Ne + 212Pb 56.15 29.8
−→ 26Ne + 210Pb 56.94 30.6
−→ 30Mg + 206Hg 72.73 29.1

236Pu −→ 28Mg + 208Pb 79.90 21.3 21.7
238Pu −→ 28Mg + 210Pb 76.16 25.6 }

25.7−→ 30Mg + 208Pb 77.26 25.8
−→ 32Si + 206Hg 91.47 25.8 25.3

240Cm −→ 32Si + 208Pb 97.83 21.8
−→ 34Si + 206Pb 91.31 27.3

252Cf −→ 46Ar + 206Hg 127.1 29.9

Tabelle 1: The theoretical valuesτtheor of (14) are compared to the measured half-
lives10 τexp for decays from even parent to even daughter nuclei which are always
favoured. The energiesEaA are given in MeV, the half-livesτ in seconds. The
theoretical and experimental values agree generally within a factor of 5; only for
228Th → 20O + 208Pb the theoretical half-life is ten times too large.
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A+a(Z + z) −→ az + AZ EaA logτtheor logτexp

221Fr −→ 14C + 207Tl 31.40 14.1
31.05 14.7
30.06 16.7 > 15.8

221Ra −→ 14C + 207Pb 32.50 13.0
31.93 14.0
31.60 14.6 > 14.4
30.87 16.0

223Ra −→ 14C + 209Pb 31.96 13.8
31.18 15.3 15.2
30.54 16.5
30.39 16.8

225Ac −→ 14C + 211Bi 30.59 17.3 17.2
30.19 18.1
29.83 18.9

229Th −→ 14C + 215Po 27.22 25.7
26.94 26.3
26.92 26.4
26.81 26.7

−→ 20O + 209Pb 43.57 24.0
42.79 25.4
42.15 26.6
42.00 26.9

−→ 24Ne + 205Hg 58.02 24.7
57.65 25.3
57.56 25.4
56.17 27.6

231Pa −→ 24Ne + 207Tl 60.61 22.2
60.26 22.7 23.4
59.27 24.1

Tabelle 2: Cluster radioactive decays from odd parent nuclei to daughter nu-
clei which are in the ground-state or in selected excited states. The difference
EaA(g.s.) − EaA(excit.) between the tunneling energies is given by the excita-
tion energyEex

A of the daughter nucleus. The calculated half-livesτtheor apply to
favoured transitions only. Since the fine structure is usually not resolved, the exper-
imental half-livesτexp are attached tentatively to favoured transitions in accordance
with our calculation. Decays into lower states are then hindered or unfavoured.
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A+a(Z + z) −→ az + AZ EaA logτtheor logτexp

233U −→ 24Ne + 209Pb 60.69 23.2
59.91 24.3 24.8
59.27 25.2
59.12 25.4

−→ 28Mg + 205Hg 74.47 25.3
74.10 25.8
74.01 25.9
72.62 27.7

235U −→ 24Ne + 211Pb 57.55 27.7 27.4
−→ 26Ne + 209Pb 58.30 28.4

57.52 29.7
56.88 30.7
56.73 31.0

−→ 28Mg + 207Hg 72.42 27.8
237Np −→ 30Mg + 207Tl 75.25 27.1

74.90 27.5 > 27.3
73.92 28.8

239Pu −→ 34Si + 205Hg 91.11 27.6
90.74 28.1
90.65 28.2
89.26 29.8

241Am −→ 34Si + 207Tl 94.21 25.5 > 25.3
93.86 25.9
92.87 27.0

243Cm −→ 34Si + 209Pb 95.05 25.9
94.27 26.7
93.62 27.4
93.48 27.6

231Pa −→ 23F + 208Pb 52.01 24.7 > 24.6
49.40 29.1
48.81 30.1

233U −→ 25Ne + 208Pb 60.94 23.7
58.33 27.6
57.74 28.5

235U −→ 25Ne + 210Pb 58.02 27.9 27.4
57.24 29.2
56.94 29.6

Tabelle 3: Continuation of Table 2. The last entries are decays where the emitted
cluster is odd.


