Korrekturen¹ zur Mechanik, 6. Auflage, 2009

Seite 7: Nach (1.7) muss es heißen ... die Basisvektoren e_x , e_y und e_z ...

Seite 21: In der 2. Zeile muss heißen: Hierfür kann $F_{kons} = -mg$ als -dU(x)/dx mit dem Potenzial U = mgx geschrieben werden.

Seite 22: In der 4. Zeile nach (3.25) muss $\int d\mathbf{F} \cdot \operatorname{rot} \mathbf{F}$ durch $\int d\mathbf{A} \cdot \operatorname{rot} \mathbf{F}$ ersetzt werden.

Seite 40: In der 2. Zeile nach (6.3) muss es F = -ma heißen.

Seite 62: In der 3. Zeile nach (8.38) muss es $E = T = m\dot{r}^2/2$ heißen.

Seite 80: In der 8. Zeile nach (10.23) sollte es $g_{ik} = h_i(q)^2 \delta_{ik}$ heißen.

Seite 89: Gleichung (11.8) muss lauten

$$\left(\frac{d\mathcal{L}_{0}^{*}}{d\epsilon}\right)_{\epsilon=0} = 0 \quad \stackrel{(11.7)}{\Longrightarrow} \quad \mathcal{L}_{0} - \sum_{\nu=1}^{N} \frac{\partial \mathcal{L}_{0}}{\partial \dot{\boldsymbol{r}}_{\nu}} \cdot \dot{\boldsymbol{r}}_{\nu} = -(T+U) = \text{const.} \quad (11.8)$$

Seite 101: In der letzten Zeile muss es ... Randwerte $y(x_1)$, $y(x_2)$, $y'(x_1)$ und $y'(x_2)$... heißen.

Seite 123: In der ersten Zeile muss es ... $\mathcal{L}(q^*, dq^*/dt^*, t^*) dt^*/dt$... heißen.

Seite 198: Die letzten beiden Sätze

Diese Bewegung wird auch als *reguläre* Präzession bezeichnet. Im Gegensatz dazu oszilliert die Figurenachse des schweren Kreisels (Abbildung 23.3) zwischen zwei θ -Werten (Nutationen)¹.

erhalten eine Fußnote:

¹Hinweis: Im deutschen Sprachraum wird gelegentlich die hier beschriebene reguläre Präzession als Nutation bezeichnet. Unsere Bezeichnung deckt sich mit der von Goldstein [6], von anderen amerikanischen Lehrbüchern und vom fünfbändigen *Lexikon der Physik* des Spektrum Akademischen Verlags (1. Auflage). Das Lexikon definiert für Nutation: "In der Kreiseltheorie die kleine periodische Schwankung des Öffnungswinkels des Präzessionskegels . . . ".

Seite 205: Gleichung (23.21) muss lauten

$$\mathbf{d} := (d_1, d_2, d_3) = d \left(\cos \theta_0 \cos \Omega_{\mathbf{E}} t, \cos \theta_0 \sin \Omega_{\mathbf{E}} t, \sin \theta_0 \cos \Omega_{\mathbf{E}} t \right)$$
 (23.10)

Seite 224: In der vierten Zeile nach (25.41) muss es $f_i(t) = (-\partial U_e/\partial q_i)_0$ heißen.

¹Für wertvolle Hinweise bedanke ich mich bei Peter Leitner.

Seite 245: In (28.13) und (28.16) ist jeweils H durch H' zu ersetzen.

Seite 248: Gleichung (28.29) lautet:

$$F = F(q_1, ..., q_f, p_1, ..., p_f, t) = F(q, p, t), \qquad K = K(q, p, t)$$
 (28.29)

Seite 270: Gleichung (32.6) muss lauten

$$\int_{V} d^{3}r \left(\frac{\partial \varrho}{\partial t} + \operatorname{div} \left(\varrho \, \boldsymbol{v} \right) \right) = 0 \tag{32.6}$$

Seite 307: Die zweite Zeile muss lauten: "(je nach Größe von v), also" Unmittelbar vor (35.21) ist |v/c| < c durch |v/c| < 1 zu ersetzen.

Seite 335: Der Satz nach (39.3) muss lauten: Aus (38.40) und $m_1 = m_2$ folgt dann $v_1(t) = -v_2(t)$.